MOVING SPHERES FOR SEMILINEAR SPECTRAL FRACTIONAL LAPLACIAN EQUATIONS IN THE HALF SPACE

被引:1
|
作者
LI, Jing [1 ]
Ma, Li [2 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Math & Phys, 30 Xueyuan Rd, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Moving spheres; spectral fractional Laplacian; monotonicity; symmetry result; ELLIPTIC-EQUATIONS; INTEGRAL-EQUATION; REGULARITY; SYMMETRY; THEOREMS;
D O I
10.3934/dcds.2022172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a direct method of moving spheres for the spectral fractional Laplacian (- increment D)alpha/2 with 0 < alpha < 2 on the half Euclidean space. As one expected, the key ingredient is the narrow region maximum principle, which can be obtained via the hide monotonicity of the kernel used in the definition of the spectral fractional Laplacian. Using this di-rect method of moving spheres, we establish monotonicity or symmetry results for nonlinear spectral Laplacian equations on the half Euclidean space.
引用
收藏
页码:846 / 859
页数:14
相关论文
共 50 条