Parameter estimation and random number generation for student Lévy processes

被引:1
|
作者
Li, Shuaiyu [1 ]
Wu, Yunpei [2 ]
Cheng, Yuzhong [3 ]
机构
[1] Kyushu Univ, Sch Informat Sci & Elect Engn, Fukuoka 8190395, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[3] Kyushu Univ, Joint Grad Sch Math Innovat, Fukuoka 8190395, Japan
关键词
Levy process; Parametric estimation; Quasi maximum likelihood estimation; Neural networks; CNN-LSTM; DRIVEN;
D O I
10.1016/j.csda.2024.107933
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To address the challenges in estimating parameters of the widely applied Student-Levy process, the study introduces two distinct methods: a likelihood -based approach and a data -driven approach. A two-step quasi -likelihood -based method is initially proposed, countering the nonclosed nature of the Student-Levy process's distribution function under convolution. This method utilizes the limiting properties observed in high -frequency data, offering estimations via a quasilikelihood function characterized by asymptotic normality. Additionally, a novel neural -networkbased parameter estimation technique is advanced, independent of high -frequency observation assumptions. Utilizing a CNN-LSTM framework, this method effectively processes sparse, local jump -related data, extracts deep features, and maps these to the parameter space using a fully connected neural network. This innovative approach ensures minimal assumption reliance, end -to -end processing, and high scalability, marking a significant advancement in parameter estimation techniques. The efficacy of both methods is substantiated through comprehensive numerical experiments, demonstrating their robust performance in diverse scenarios.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Parameter Estimation for the Discretely Observed Vasicek Model with Small Fractional Lévy Noise
    Guang Jun Shen
    Qing Bo Wang
    Xiu Wei Yin
    Acta Mathematica Sinica, English Series, 2020, 36 : 443 - 461
  • [42] Parameter Estimation for the Discretely Observed Vasicek Model with Small Fractional Lévy Noise
    Guang Jun SHEN
    Qing Bo WANG
    Xiu Wei YIN
    Acta Mathematica Sinica,English Series, 2020, 36 (04) : 443 - 461
  • [43] Passage times of random walks and Lévy processes across power law boundaries
    R.A. Doney
    R.A. Maller
    Probability Theory and Related Fields, 2005, 133 : 57 - 70
  • [44] The Coding Complexity of Lévy Processes
    Frank Aurzada
    Steffen Dereich
    Foundations of Computational Mathematics, 2009, 9 : 359 - 390
  • [45] The Coding Complexity of L,vy Processes
    Aurzada, Frank
    Dereich, Steffen
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (03) : 359 - 390
  • [46] Numerical methods for L,vy processes
    Hilber, N.
    Reich, N.
    Schwab, C.
    Winter, C.
    FINANCE AND STOCHASTICS, 2009, 13 (04) : 471 - 500
  • [47] Precise Asymptotics for Lévy Processes
    Zhi Shui Hu
    Chun Su
    Acta Mathematica Sinica, English Series, 2007, 23 : 1265 - 1270
  • [48] Singularity sets of L,vy processes
    Durand, Arnaud
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (3-4) : 517 - 544
  • [49] On Approximation of Some Lévy Processes
    Taras, Dmytro Ivanenko
    Knopova, Victoria
    Platonov, Denis
    AUSTRIAN JOURNAL OF STATISTICS, 2025, 54 (01) : 177 - 199
  • [50] On Exponential Functionals of Lévy Processes
    Anita Behme
    Alexander Lindner
    Journal of Theoretical Probability, 2015, 28 : 681 - 720