Parameter estimation and random number generation for student Lévy processes

被引:1
|
作者
Li, Shuaiyu [1 ]
Wu, Yunpei [2 ]
Cheng, Yuzhong [3 ]
机构
[1] Kyushu Univ, Sch Informat Sci & Elect Engn, Fukuoka 8190395, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[3] Kyushu Univ, Joint Grad Sch Math Innovat, Fukuoka 8190395, Japan
关键词
Levy process; Parametric estimation; Quasi maximum likelihood estimation; Neural networks; CNN-LSTM; DRIVEN;
D O I
10.1016/j.csda.2024.107933
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To address the challenges in estimating parameters of the widely applied Student-Levy process, the study introduces two distinct methods: a likelihood -based approach and a data -driven approach. A two-step quasi -likelihood -based method is initially proposed, countering the nonclosed nature of the Student-Levy process's distribution function under convolution. This method utilizes the limiting properties observed in high -frequency data, offering estimations via a quasilikelihood function characterized by asymptotic normality. Additionally, a novel neural -networkbased parameter estimation technique is advanced, independent of high -frequency observation assumptions. Utilizing a CNN-LSTM framework, this method effectively processes sparse, local jump -related data, extracts deep features, and maps these to the parameter space using a fully connected neural network. This innovative approach ensures minimal assumption reliance, end -to -end processing, and high scalability, marking a significant advancement in parameter estimation techniques. The efficacy of both methods is substantiated through comprehensive numerical experiments, demonstrating their robust performance in diverse scenarios.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Parameter Estimation for Geometric Lévy Processes with Constant Volatility
    Chhetri S.
    Long H.
    Ball C.
    Annals of Data Science, 2025, 12 (1) : 63 - 93
  • [2] Parameter estimation for Ornstein–Uhlenbeck processes driven by fractional Lévy process
    Guangjun Shen
    Yunmeng Li
    Zhenlong Gao
    Journal of Inequalities and Applications, 2018
  • [3] Branching Processes in a Lévy Random Environment
    S. Palau
    J. C. Pardo
    Acta Applicandae Mathematicae, 2018, 153 : 55 - 79
  • [4] Random Fractals Determined by Lévy Processes
    Jamison Wolf
    Journal of Theoretical Probability, 2010, 23 : 1182 - 1203
  • [5] Branching Processes in a L,vy Random Environment
    Palau, S.
    Pardo, J. C.
    ACTA APPLICANDAE MATHEMATICAE, 2018, 153 (01) : 55 - 79
  • [6] Random walks and Lévy processes as rough paths
    Ilya Chevyrev
    Probability Theory and Related Fields, 2018, 170 : 891 - 932
  • [7] Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises
    Xuekang Zhang
    Huisheng Shu
    Haoran Yi
    Journal of Theoretical Probability, 2023, 36 : 78 - 98
  • [8] Simulation of Student–Lévy processes using series representations
    Till Massing
    Computational Statistics, 2018, 33 : 1649 - 1685
  • [9] Nonparametric estimation for irregularly sampled Lévy processes
    Kappus J.
    Statistical Inference for Stochastic Processes, 2018, 21 (1) : 141 - 167
  • [10] Approximation of quantum Lévy processes by quantum random walks
    Uwe Franz
    Adam Skalski
    Proceedings Mathematical Sciences, 2008, 118 : 281 - 288