Positive flow-spines and contact 3-manifolds, II

被引:0
|
作者
Ishii, Ippei [1 ]
Ishikawa, Masaharu [2 ]
Koda, Yuya [2 ,3 ]
Naoe, Hironobu [4 ]
机构
[1] Keio Univ, Fac Sci & Technol, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama 2238522, Japan
[2] Keio Univ, Dept Math, Hiyoshi Campus,4-1-1 Hiyoshi,Kohoku, Yokohama 2238521, Japan
[3] Hiroshima Univ, Int Inst Sustainabil Knotted Chiral Meta Matter WP, 1-7-1 Kagamiyama, Higashihiroshima 7398526, Japan
[4] Chuo Univ, Dept Math, 1-13-27 Kasuga,Bunkyo Ku, Tokyo 1128551, Japan
关键词
3-Dimensional manifold; Contact structure; Flow; Spine; Polyhedron;
D O I
10.1007/s10231-023-01400-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous paper, it is proved that for any positive flow-spine P of a closed, oriented 3-manifold M, there exists a unique contact structure supported by P up to isotopy. In particular, this defines a map from the set of isotopy classes of positive flow-spines of M to the set of isotopy classes of contact structures on M. In this paper, we show that this map is surjective. As a corollary, we show that any flow-spine can be deformed to a positive flow-spine by applying first and second regular moves successively.
引用
收藏
页码:1251 / 1266
页数:16
相关论文
共 50 条
  • [31] Contact structures on elliptic 3-manifolds
    Gadgil, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3705 - 3714
  • [32] Contact 3-Manifolds and Symplectic Fillings
    Wendl, Chris
    HOLOMORPHIC CURVES IN LOW DIMENSIONS: FROM SYMPLECTIC RULED SURFACES TO PLANAR CONTACT MANIFOLDS, 2018, 2216 : 241 - 273
  • [33] INVARIANT CONTACT FORMS ON 3-MANIFOLDS
    MONNA, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 298 (12): : 281 - 283
  • [34] Biminimal submanifolds in contact 3-manifolds
    Inoguchi, Jun-ichi
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2007, 12 (01): : 56 - 67
  • [35] Normal contact structures on 3-manifolds
    Geiges, H
    TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (03) : 415 - 422
  • [36] Geodesible contact structures on 3-manifolds
    Massot, Patrick
    GEOMETRY & TOPOLOGY, 2008, 12 : 1729 - 1776
  • [37] Loops of Legendrians in Contact 3-Manifolds
    Fernandez, Eduardo
    Martinez-Aguinaga, Javier
    Presas, Francisco
    CLASSICAL AND QUANTUM PHYSICS: 60 YEARS ALBERTO IBORT FEST GEOMETRY, DYNAMICS, AND CONTROL, 2019, 229 : 361 - 372
  • [38] The curvature of contact structures on 3-manifolds
    Krouglov, Vladimir
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (03): : 1567 - 1579
  • [39] Embedding fillings of contact 3-manifolds
    Ozbagci, Burak
    EXPOSITIONES MATHEMATICAE, 2006, 24 (02) : 161 - 183
  • [40] Tightness in contact metric 3-manifolds
    Etnyre, John B.
    Komendarczyk, Rafal
    Massot, Patrick
    INVENTIONES MATHEMATICAE, 2012, 188 (03) : 621 - 657