Positive flow-spines and contact 3-manifolds, II

被引:0
|
作者
Ishii, Ippei [1 ]
Ishikawa, Masaharu [2 ]
Koda, Yuya [2 ,3 ]
Naoe, Hironobu [4 ]
机构
[1] Keio Univ, Fac Sci & Technol, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama 2238522, Japan
[2] Keio Univ, Dept Math, Hiyoshi Campus,4-1-1 Hiyoshi,Kohoku, Yokohama 2238521, Japan
[3] Hiroshima Univ, Int Inst Sustainabil Knotted Chiral Meta Matter WP, 1-7-1 Kagamiyama, Higashihiroshima 7398526, Japan
[4] Chuo Univ, Dept Math, 1-13-27 Kasuga,Bunkyo Ku, Tokyo 1128551, Japan
关键词
3-Dimensional manifold; Contact structure; Flow; Spine; Polyhedron;
D O I
10.1007/s10231-023-01400-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous paper, it is proved that for any positive flow-spine P of a closed, oriented 3-manifold M, there exists a unique contact structure supported by P up to isotopy. In particular, this defines a map from the set of isotopy classes of positive flow-spines of M to the set of isotopy classes of contact structures on M. In this paper, we show that this map is surjective. As a corollary, we show that any flow-spine can be deformed to a positive flow-spine by applying first and second regular moves successively.
引用
收藏
页码:1251 / 1266
页数:16
相关论文
共 50 条
  • [1] Positive flow-spines and contact 3-manifolds
    Ishii, Ippei
    Ishikawa, Masaharu
    Koda, Yuya
    Naoe, Hironobu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (05) : 2091 - 2126
  • [2] Positive flow-spines and contact 3-manifolds
    Ippei Ishii
    Masaharu Ishikawa
    Yuya Koda
    Hironobu Naoe
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2091 - 2126
  • [3] A coloring invariant of 3-manifolds derived from their flow-spines and virtual knot diagrams
    Ishii, Ippei
    Nakamura, Takuji
    Saito, Toshio
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (03): : 984 - 1004
  • [4] Branched spines and contact structures on 3-manifolds (*)
    Benedetti R.
    Petronio C.
    Annali di Matematica Pura ed Applicata, 2000, 178 (1) : 81 - 102
  • [5] Heegaard spines of 3-manifolds
    Paola Bandieri
    Acta Mathematica Hungarica, 2005, 106 : 271 - 284
  • [6] ON SPINES OF 3-MANIFOLDS WITH BOUNDARY
    GORDON, CM
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1993, 55 : 132 - 136
  • [7] Heegaard spines of 3-manifolds
    Bandieri, P
    ACTA MATHEMATICA HUNGARICA, 2005, 106 (03) : 271 - 284
  • [8] SIMPLIFYING SPINES OF 3-MANIFOLDS
    OSBORNE, R
    PACIFIC JOURNAL OF MATHEMATICS, 1978, 74 (02) : 473 - 480
  • [9] 3-MANIFOLDS WITH DISJOINT SPINES ARE PRODUCTS
    MARTIN, J
    ILLINOIS JOURNAL OF MATHEMATICS, 1970, 14 (01) : 178 - &
  • [10] A calculus for branched spines of 3-manifolds
    Costantino, F
    MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (02) : 427 - 442