In Situ Encapsulation of Graphene Quantum Dots in Highly Stable Porphyrin Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction

被引:10
|
作者
Yu, Qin [1 ]
Wang, Xusheng [1 ,2 ,3 ,4 ]
Wu, Wenbin [1 ]
Feng, Xinya [1 ]
Kong, Deyu [1 ]
Khan, Usman [1 ]
Ren, Xiaohui [5 ]
Li, Lan [6 ]
机构
[1] Zhejiang Sci Tech Univ, Inst Funct Porous Mat, Sch Mat Sci & Engn, Hangzhou 310018, Peoples R China
[2] Jinan Univ, Guangdong Prov Key Lab Funct Supramol Coordinat Ma, Guangzhou 510632, Peoples R China
[3] Zhejiang Sci Tech Univ, Tongxiang Res Inst, Jiaxing 314500, Peoples R China
[4] Zhejiang LINIX Motor Co Ltd, Jinhua 322118, Peoples R China
[5] Wuhan Univ Sci & Technol, Sch Mat & Met, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[6] China Jiliang Univ, Coll Mat & Chem, Hangzhou 310018, Peoples R China
来源
MOLECULES | 2023年 / 28卷 / 12期
基金
中国国家自然科学基金;
关键词
metal-organic frameworks; porous materials; graphene quantum dots; photocatalyst; photocatalysis; photoreduction; CO2; PCN-222; porphyrin; MOFs; VISIBLE-LIGHT PHOTOREDUCTION; WATER; NANOCOMPOSITE; CONVERSION;
D O I
10.3390/molecules28124703
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Photocatalytic CO2 reduction to valuable hydrocarbon solar fuel is of great significance but still challenging. Strong CO2 enrichment ability and easily adjustable structures make metal-organic frameworks (MOFs) potential photocatalysts for CO2 conversion. Even though pure MOFs have the potential for photoreduction of CO2, the efficiency is still quite low due to rapid photogenerated electron-hole recombination and other drawbacks. In this work, graphene quantum dots (GQDs) were in situ encapsulated into highly stable MOFs via a solvothermal method for this challenging task. The GQDs@PCN-222 with encapsulated GQDs showed similar Powder X-ray Diffraction (PXRD) patterns to PCN-222, indicating the retained structure. The porous structure was also retained with a Brunauer-Emmett-Teller (BET) surface area of 2066 m(2)/g. After incorporation of GQDs, the shape of GQDs@PCN-222 particles remained, as revealed by the scanning electron microscope (SEM). As most of the GQDs were covered by thick PCN-222, it was hard to observe those GQDs using a transmission electron microscope (TEM) and a high-resolution transmission electron microscope (HRTEM) directly, the treatment of digested GQDs@PCN-222 particles by immersion in a 1 mM aqueous KOH solution can make the incorporated GQDs visible in TEM and HRTEM. The linker, deep purple porphyrins, make MOFs a highly visible light harvester up to 800 nm. The introduction of GQDs inside PCN-222 can effectively promote the spatial separation of the photogenerated electron-hole pairs during the photocatalytic process, which was proved by the transient photocurrent plot and photoluminescence emission spectra. Compared with pure PCN-222, the obtained GQDs@PCN-222 displayed dramatically enhanced CO production derived from CO2 photoreduction with 147.8 & mu;mol/g/h in a 10 h period under visible light irradiation with triethanolamine (TEOA) as a sacrificial agent. This study demonstrated that the combination of GQDs and high light absorption MOFs provides a new platform for photocatalytic CO2 reduction.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] CO2 photocatalytic reduction with robust and stable metal-organic framework: a review
    Mori, Ryohei
    MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2024, 13 (01) : 109 - 132
  • [22] Structural Engineering of Metal-Organic Frameworks for Efficient CO2 Reduction Reaction
    Cheng, Mingjie
    Zheng, Xiaoli
    Ma, Fuxiao
    Zhu, Zhengkai
    Xu, Qun
    CHEMCATCHEM, 2024, 16 (17)
  • [23] Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO2 Reduction
    Wang, Ziqi
    Fei, Honghan
    Wu, Yi-nan
    CHEMSUSCHEM, 2024, 17 (19)
  • [24] Revisiting Photocatalytic CO2 Reduction to Methanol: A Perspective Focusing on Metal-Organic Frameworks
    de Almeida, Vitor Fernandes
    Navalon, Sergio
    Dhakshinamoorthy, Amarajothi
    Garcia, Hermenegildo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [25] Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review
    Ke Guo
    Ijaz Hussain
    Guang′an Jie
    Yanghe Fu
    Fumin Zhang
    Weidong Zhu
    Journal of Environmental Sciences, 2023, (03) : 290 - 308
  • [26] Titanium based metal-organic frameworks for visible light photocatalytic reduction of CO2
    Logon, Matthew
    Aleger, Nathan
    Ayad, Suliman
    Adamson, Jeremy
    Hanson, Kenneth
    Uribe-Romo, Fernando
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [27] Enhancing photocatalytic performance of metal-organic frameworks for CO2 reduction by a bimetallic strategy
    Jihong Zhang
    Yuchen Wang
    Hongjuan Wang
    Dichang Zhong
    Tongbu Lu
    Chinese Chemical Letters, 2022, 33 (04) : 2065 - 2068
  • [28] Mechanistic study on CO2 hydrogenation and photocatalytic reduction using metal-organic frameworks
    Wang, Cheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [29] Enhancing photocatalytic performance of metal-organic frameworks for CO2 reduction by a bimetallic strategy
    Zhang, Jihong
    Wang, Yuchen
    Wang, Hongjuan
    Zhong, Dichang
    Lu, Tongbu
    CHINESE CHEMICAL LETTERS, 2022, 33 (04) : 2065 - 2068
  • [30] Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels
    Ezugwu, Chizoba, I
    Liu, Shengwei
    Li, Chuanhao
    Zhuiykov, Serge
    Roy, Soumyajit
    Verpoort, Francis
    COORDINATION CHEMISTRY REVIEWS, 2022, 450