TLWSR: Weakly supervised real-world scene text image super-resolution using text label

被引:1
|
作者
Shi, Qin [1 ]
Zhu, Yu [1 ,3 ]
Fang, Chuantao [1 ]
Yang, Dawei [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China
[2] Fudan Univ, Zhongshan Hosp, Dept Pulm & Crit Care Med, Shanghai, Peoples R China
[3] Shanghai Engn Res Ctr Internet Things Resp Med, Shanghai, Peoples R China
关键词
image processing; image resolution; unsupervised learning; NETWORK;
D O I
10.1049/ipr2.12827
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene text image super-resolution (STISR) has recently received considerable attention. Existing STISR methods are applicable to the situation that all the LR-HR pairs are available. However, in real-world scenarios, it is difficult and expensive to collect ground-truth HR labels and align them with LR images, and thus it is essential to find a way to implement weakly supervised learning. We investigate the STISR problem in the situation that only a subset of HR labels is available and design a weak supervision framework using coarse-grained text labels named TLWSR, which combines incomplete supervision and inexact supervision. Specifically, a lightweight text recognition network and connectionist temporal classification loss are used to guide the super-resolution of text images during training. Extensive experiments on the benchmark TextZoom demonstrate that TLWSR generates distinguishable text images and exceeds the fully supervised baseline TSRN in boosting text recognition accuracywith only 50% HR labels available. Meanwhile, TLWSR can be applied to different super-resolution backbones and significantly improves their performance. Furthermore, TLWSR shows good generalization capability to low-quality images on scene text recognition benchmarks, which verifies the effectiveness of this framework. To the authors' knowledge, this is the first work exploring the problem of STISR in weakly supervised scenarios.
引用
收藏
页码:2780 / 2790
页数:11
相关论文
共 50 条
  • [41] Robust Real-World Image Super-Resolution against Adversarial Attacks
    Yue, Jiutao
    Li, Haofeng
    Wei, Pengxu
    Li, Guanbin
    Lin, Liang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5148 - 5157
  • [42] Towards Real-World Burst Image Super-Resolution: Benchmark and Method
    Wei, Pengxu
    Sun, Yujing
    Guo, Xingbei
    Liu, Chang
    Li, Guanbin
    Chen, Jie
    Ji, Xiangyang
    Lin, Liang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13187 - 13196
  • [43] Empowering Real-World Image Super-Resolution With Flexible Interactive Modulation
    Mou, Chong
    Wang, Xintao
    Wu, Yanze
    Shan, Ying
    Zhang, Jian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (11) : 7317 - 7330
  • [44] Real-World Image Super-Resolution as Multi-Task Learning
    Zhang, Wenlong
    Li, Xiaohui
    Shi, Guangyuan
    Chen, Xiangyu
    Zhang, Xiaoyun
    Qiao, Yu
    Wu, Xiao-Ming
    Dong, Chao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [45] Scene text image super-resolution via textual reasoning and multiscale cross-convolution
    Lan Yu
    Xiaojie Li
    Qi Yu
    Guangju Li
    Dehu Jin
    Meng Qi
    Applied Intelligence, 2024, 54 : 1997 - 2008
  • [46] Text-Enhanced Scene Image Super-Resolution via Stroke Mask and Orthogonal Attention
    Shu, Rui
    Zhao, Cairong
    Feng, Shuyang
    Zhu, Liang
    Miao, Duoqian
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (11) : 6317 - 6330
  • [47] Pragmatic degradation learning for scene text image super-resolution with data-training strategy
    Yang, Shengying
    Xie, Lifeng
    Ran, Xiaoxiao
    Lei, Jingsheng
    Qian, Xiaohong
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [48] Scene text image super-resolution via textual reasoning and multiscale cross-convolution
    Yu, Lan
    Li, Xiaojie
    Yu, Qi
    Li, Guangju
    Jin, Dehu
    Qi, Meng
    APPLIED INTELLIGENCE, 2024, 54 (02) : 1997 - 2008
  • [49] Real-World Super-Resolution using Generative Adversarial Networks
    Ren, Haoyu
    Kheradmand, Amin
    El-Khamy, Mostafa
    Wang, Shuangquan
    Bai, Dongwoon
    Lee, Jungwon
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1760 - 1768
  • [50] Unsupervised Learning for Real-World Super-Resolution
    Lugmayr, Andreas
    Danelljan, Martin
    Timofte, Radu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3408 - 3416