TLWSR: Weakly supervised real-world scene text image super-resolution using text label

被引:1
|
作者
Shi, Qin [1 ]
Zhu, Yu [1 ,3 ]
Fang, Chuantao [1 ]
Yang, Dawei [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China
[2] Fudan Univ, Zhongshan Hosp, Dept Pulm & Crit Care Med, Shanghai, Peoples R China
[3] Shanghai Engn Res Ctr Internet Things Resp Med, Shanghai, Peoples R China
关键词
image processing; image resolution; unsupervised learning; NETWORK;
D O I
10.1049/ipr2.12827
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene text image super-resolution (STISR) has recently received considerable attention. Existing STISR methods are applicable to the situation that all the LR-HR pairs are available. However, in real-world scenarios, it is difficult and expensive to collect ground-truth HR labels and align them with LR images, and thus it is essential to find a way to implement weakly supervised learning. We investigate the STISR problem in the situation that only a subset of HR labels is available and design a weak supervision framework using coarse-grained text labels named TLWSR, which combines incomplete supervision and inexact supervision. Specifically, a lightweight text recognition network and connectionist temporal classification loss are used to guide the super-resolution of text images during training. Extensive experiments on the benchmark TextZoom demonstrate that TLWSR generates distinguishable text images and exceeds the fully supervised baseline TSRN in boosting text recognition accuracywith only 50% HR labels available. Meanwhile, TLWSR can be applied to different super-resolution backbones and significantly improves their performance. Furthermore, TLWSR shows good generalization capability to low-quality images on scene text recognition benchmarks, which verifies the effectiveness of this framework. To the authors' knowledge, this is the first work exploring the problem of STISR in weakly supervised scenarios.
引用
收藏
页码:2780 / 2790
页数:11
相关论文
共 50 条
  • [1] Text Prior Guided Scene Text Image Super-Resolution
    Ma, Jianqi
    Guo, Shi
    Zhang, Lei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1341 - 1353
  • [2] Text Image Super-resolution by Image Matting and Text Label Supervision
    Lin, Kai
    Liu, Yubao
    Li, Thomas H.
    Liu, Shan
    Li, Ge
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1722 - 1727
  • [3] Scene Text Telescope: Text-Focused Scene Image Super-Resolution
    Chen, Jingye
    Li, Bin
    Xue, Xiangyang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12021 - 12030
  • [4] Self-supervised memory learning for scene text image super-resolution
    Guo, Kehua
    Zhu, Xiangyuan
    Schaefer, Gerald
    Ding, Rui
    Fang, Hui
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [5] Text Gestalt: Stroke-Aware Scene Text Image Super-resolution
    Chen, Jingye
    Yu, Haiyang
    Ma, Jianqi
    Li, Bin
    Xue, Xiangyang
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 285 - 293
  • [6] TSRGAN: Real-world text image super-resolution based on adversarial learning and triplet attention
    Fang, Chuantao
    Zhu, Yu
    Liao, Lei
    Ling, Xiaofeng
    NEUROCOMPUTING, 2021, 455 : 88 - 96
  • [7] Batch-transformer for scene text image super-resolution
    Sun, Yaqi
    Xie, Xiaolan
    Li, Zhi
    Yang, Kai
    VISUAL COMPUTER, 2024, 40 (10): : 7399 - 7409
  • [8] Perceiving Multiple Representations for scene text image super-resolution guided by text recognizer
    Shi, Qin
    Zhu, Yu
    Liu, Yatong
    Ye, Jiongyao
    Yang, Dawei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 124
  • [9] A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution
    Ma, Jianqi
    Liang, Zhetong
    Zhang, Lei
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5901 - 5910
  • [10] Scene Text Image Super-Resolution Via Semantic Distillation and Text Perceptual Loss
    Zhao, Cairong
    Shu, Rui
    Feng, Shuyang
    Zhu, Liang
    Wang, Xuekuan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1153 - 1164