Non-aqueous organic redox active materials for a bicontinuous microemulsion-based redox flow battery

被引:8
|
作者
Zheng, Yimin [1 ]
Ramos, Alvaro Perez [1 ]
Wang, Hongchun [1 ]
Alvarez, Gonzalo [2 ]
Ridruejo, Alvaro [2 ]
Peng, Jing [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Key Lab Aerosp Mat & Performance, Minist Educ, Beijing 100191, Peoples R China
[2] Univ Politecn Madrid, Dept Mat Sci, ETSI Caminos, C Prof Aranguren 3, Madrid 28040, Spain
基金
中国国家自然科学基金;
关键词
Microemulsion electrolyte; Redox flow battery; Non -aqueous organic redox active materials; Energy storage; Molecular dynamic simulation; ELECTRODE; ELECTROCHEMISTRY; REDUCTION;
D O I
10.1016/j.mtener.2023.101286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To mitigate fluctuations in renewable energy sources, redox flow batteries (RFBs) attract much attention for stationary energy storage applications by taking advantage of decoupling power and energy. How-ever, there are still some limitations for conventional RFBs, including low energy density, a narrow electrochemical window (similar to 1.23 V) for an aqueous electrolyte, and low ionic conductivity for a non-aqueous electrolyte. Herein, we demonstrate a bicontinuous microemulsion-based RFB using methyl-p-benzoquinone and 2,2,6,6-Tetramethyl-1-piperidinyloxy as anolyte and catholyte redox active materials, respectively. By stabilizing an aqueous and organic medium at a nanometer scale through a surfactant, the microemulsion electrolyte exhibits a wider electrochemical window and good ionic conductivity, a promising alternative to increase the energy density by applying non-aqueous redox species with high solubility and high redox potential. The resulting cell exhibits Coulombic efficiency of 80%-85% and capacity retention of 50% over 30 cycles. We provide a systemic analysis of performance limitation and capacity decay and proposed a possible dimerization mechanism for an anolyte through a density functional theorycalculation, ending with a discussion of the efforts needed to realize the application of microemulsion-based RFBs. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Application of redox non-innocent ligands to non-aqueous flow battery electrolytes
    Cappillino, Patrick J.
    Pratt, Harry D.
    Hudak, Nicholas S.
    Tomson, Neil C.
    Anderson, Travis M.
    Anstey, Mitchell R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [32] Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes
    Cappillino, Patrick J.
    Pratt, Harry D., III
    Hudak, Nicholas S.
    Tomson, Neil C.
    Anderson, Travis M.
    Anstey, Mitchell R.
    ADVANCED ENERGY MATERIALS, 2014, 4 (01)
  • [33] PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery
    Chai, Jingchao
    Lashgari, Amir
    Cao, Zishu
    Williams, Caroline K.
    Wang, Xiao
    Dong, Junhang
    Jiang, Jianbing Jimmy
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (13) : 15262 - 15270
  • [34] Ferrocene to functionalized ferrocene: a versatile redox-active electrolyte for high-performance aqueous and non-aqueous organic redox flow batteries
    Giri, Soumen
    Dash, Ipsa
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (31) : 16458 - 16493
  • [35] Modeling of a Non-Aqueous Redox Flow Battery for Performance and Capacity Fade Analysis
    D'Adamo, Mirko
    Daub, Nicolas
    Trilla, Lluis
    Saez-Zamora, Jose A.
    Paz-Garcia, Juan Manuel
    BATTERIES-BASEL, 2025, 11 (01):
  • [36] An oxo-verdazyl radical for a symmetrical non-aqueous redox flow battery
    Korshunov, Aleksandr
    Milner, Matthew James
    Gruenebaum, Mariano
    Studer, Armido
    Winter, Martin
    Cekic-Laskovic, Isidora
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (42) : 22280 - 22291
  • [37] Nanoparticles enrichment to carbon felt electrodes for non-aqueous redox flow battery
    Mushtaq, Kashif
    Delgado, Sofia
    Mendes, Adelio
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [38] A high-performance all-metallocene-based, non-aqueous redox flow battery
    Ding, Yu
    Zhao, Yu
    Li, Yutao
    Goodenough, John B.
    Yu, Guihua
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) : 491 - 497
  • [39] Molecular Engineering of Redox Couples for Non-Aqueous Redox Flow Batteries
    Davis, Casey M.
    Boronski, Claire E.
    Yang, Tianyi
    Liu, Tuo
    Liang, Zhiming
    BATTERIES-BASEL, 2023, 9 (10):
  • [40] Non-Aqueous Li-Based Redox Flow Batteries
    Hamelet, S.
    Tzedakis, T.
    Leriche, J. -B.
    Sailler, S.
    Larcher, D.
    Taberna, P. -L.
    Simon, P.
    Tarascona, J. -M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (08) : A1360 - A1367