Stereo RGB and Deeper LIDAR-Based Network for 3D Object Detection in Autonomous Driving

被引:14
|
作者
He, Qingdong [1 ]
Wang, Zhengning [1 ]
Zeng, Hao [1 ]
Zeng, Yi [1 ]
Liu, Yijun [1 ]
Liu, Shuaicheng [1 ]
Zeng, Bing [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
关键词
3D object detection; stereo images; semantic information; spatial information; feature fusion; deeper LIDAR features;
D O I
10.1109/TITS.2022.3215766
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
3D object detection has become an emerging task in autonomous driving scenarios. Most of previous works process 3D point clouds using either projection-based or voxel-based models. However, both approaches contain some drawbacks. The voxel-based methods lack semantic information, while the projection-based methods suffer from numerous spatial information loss when projected to different views. In this paper, we propose the Stereo RGB and Deeper LIDAR (SRDL) framework which can utilize semantic and spatial information simultaneously such that the performance of network for 3D object detection can be improved naturally. Specifically, the network generates candidate boxes from stereo pairs and combines different region-wise features using a deep fusion scheme. The stereo strategy offers more information for prediction compared with prior works. Then, several local and global feature extractors are stacked in the segmentation module to capture richer deep semantic geometric features from point clouds. After aligning the interior points with fused features, the proposed network refines the prediction in a more accurate manner and encodes the whole box in a novel compact method. The decent experimental results on the challenging KITTI detection benchmark demonstrate the effectiveness of utilizing both stereo images and point clouds for 3D object detection.
引用
收藏
页码:152 / 162
页数:11
相关论文
共 50 条
  • [21] 3D OBJECT DETECTION FOR AUTONOMOUS DRIVING USING TEMPORAL LIDAR DATA
    McCrae, Scott
    Zakhor, Avideh
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2661 - 2665
  • [22] A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving
    Alaba, Simegnew Yihunie
    Ball, John E.
    SENSORS, 2022, 22 (24)
  • [23] LiDAR-based Drivable Region Detection for Autonomous Driving
    Xue, Hanzhang
    Fu, Hao
    Ren, Ruike
    Zhang, Jintao
    Liu, Bokai
    Fan, Yiming
    Dai, Bin
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 1110 - 1116
  • [24] A review of 3D object detection based on autonomous driving
    Wang, Huijuan
    Chen, Xinyue
    Yuan, Quanbo
    Liu, Peng
    VISUAL COMPUTER, 2025, 41 (03): : 1757 - 1775
  • [25] RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection
    Fan, Lue
    Xiong, Xuan
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2898 - 2907
  • [26] Revisiting Out-of-Distribution Detection in LiDAR-based 3D Object Detection
    Koesel, Michael
    Schreiber, Marcel
    Ulrich, Michael
    Glaeser, Claudius
    Dietmayer, Klaus
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 2806 - 2813
  • [27] KPTr: Key point transformer for LiDAR-based 3D object detection
    Cao, Jie
    Peng, Yiqiang
    Wei, Hongqian
    Mo, Lingfan
    Fan, Likang
    Wang, Longfei
    MEASUREMENT, 2025, 242
  • [28] LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object Detection
    Pitropov, Matthew
    Huang, Chengjie
    Abdelzad, Vahdat
    Czarnecki, Krzysztof
    Waslander, Steven
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 813 - 820
  • [29] Aerial LiDAR-based 3D Object Detection and Tracking for Traffic Monitoring
    Cherif, Baya
    Ghazzai, Hakim
    Alsharoa, Ahmad
    Besbes, Hichem
    Massoud, Yehia
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [30] Adversarial Obstacle Generation Against LiDAR-Based 3D Object Detection
    Wang, Jian
    Li, Fan
    Zhang, Xuchong
    Sun, Hongbin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2686 - 2699