Impact of heat and mass transport on Rayleigh-Taylor instability of Walter's B viscoelastic fluid layer

被引:3
|
作者
Shukla, Atul Kumar [1 ]
Awasthi, Mukesh Kumar [1 ]
Singh, Satyvir [2 ,3 ]
机构
[1] Babasaheb Bhimrao Ambedkar Univ, Dept Math, Lucknow, India
[2] Rhein Westfal TH Aachen, Appl & Computat Math, Schinkelstr 2, D-52062 Aachen, Germany
[3] G Era Deemed be Univ, Dept Math, Dehra Dun, India
关键词
Plane interface; Walter's B viscoelastic fluid; Instability; Mass and heat transfer; KELVIN-HELMHOLTZ INSTABILITY; POTENTIAL FLOW-ANALYSIS; CYLINDRICAL FLOW; STABILITY; INTERFACE;
D O I
10.1007/s12217-023-10031-6
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The behavior of viscous fluid-Walter's B viscoelastic fluid interface in a planar configuration is investigated through an irrotational flow theory. The interface is transferring heat and mass from one fluid phase to the other. The viscoelastic fluid lies above the viscous fluid, and therefore, the interface is accepting the Rayleigh-Taylor instability. The linear stability theory is employed, and an explicit relationship between perturbation's growth and wavenumber is established. The implicit stability criterion is achieved and analyzed numerically through the Newton-Raphson numerical scheme. The nature of the interface is examined for various non-dimensional parameters such as Atwood number, Weber number, Froude number, Reynolds number, etc. by means of stability plots. The results are discussed for the various values of gravitational acceleration through the variation of the Froude number. The instability is postponed if the interface experiences more heat transfer. Additionally, compared to the Walter's B fluid interface, the Newtonian fluid interface has proven to be more stable.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Plasma transport driven by the Rayleigh-Taylor instability
    Ma, X.
    Delamere, P. A.
    Otto, A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (06) : 5260 - 5271
  • [32] Rayleigh-Taylor's instability in solids
    Lebedev, AI
    Nizovtsev, PN
    Raevskii, VA
    Solovev, VP
    DOKLADY AKADEMII NAUK, 1996, 349 (03) : 332 - 334
  • [33] Rayleigh-Taylor instability in an equal mass plasma
    Adak, Ashish
    Ghosh, Samiran
    Chakrabarti, Nikhil
    PHYSICS OF PLASMAS, 2014, 21 (09)
  • [34] Surface tension stabilization of the Rayleigh-Taylor instability for a fluid layer in a porous medium
    Gancedo, Francisco
    Granero-Belinchon, Rafael
    Scrobogna, Stefano
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (06): : 1299 - 1343
  • [35] Rayleigh-taylor instability of a thin magnetic fluid layer in a tangential magnetic field
    Korovin V.M.
    Kubasov A.A.
    Fluid Dynamics, 1998, 33 (5) : 645 - 654
  • [36] Nonlinear saturation of Rayleigh-Taylor instability in a finite-thickness fluid layer
    Guo, H. Y.
    Wang, L. F.
    Ye, W. H.
    Wu, J. F.
    Zhang, J.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2017, 24 (11)
  • [37] Surface tension stabilization of the Rayleigh-Taylor instability for a fluid layer in a porous medium
    Gancedo, Francisco
    Granero-Belinchón, Rafael
    Scrobogna, Stefano
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 2020, 37 (06): : 1299 - 1343
  • [38] Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer
    Wang, L. F.
    Guo, H. Y.
    Wu, J. F.
    Ye, W. H.
    Liu, Jie
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [39] Rayleigh-Taylor Instability of A Thin Magnetic Fluid Layer in A Tangential Magnetic Field
    Korovin, V.M.
    Kubasov, A.A.
    Fluid Dynamics, 1998, 33 (05): : 645 - 654
  • [40] Rayleigh-Taylor instability in impact cratering experiments
    Lherm, V
    Deguen, R.
    Alboussiere, T.
    Landeau, M.
    JOURNAL OF FLUID MECHANICS, 2022, 937