YOLOv7oSAR: A Lightweight High-Precision Ship Detection Model for SAR Images Based on the YOLOv7 Algorithm

被引:9
|
作者
Liu, Yilin [1 ,2 ]
Ma, Yong [1 ]
Chen, Fu [1 ]
Shang, Erping [1 ]
Yao, Wutao [1 ]
Zhang, Shuyan [1 ]
Yang, Jin [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
YOLO algorithm; ship detection; oriented bounding box; Synthetic aperture radar (SAR) images; DATASET; NETWORK;
D O I
10.3390/rs16050913
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Researchers have explored various methods to fully exploit the all-weather characteristics of Synthetic aperture radar (SAR) images to achieve high-precision, real-time, computationally efficient, and easily deployable ship target detection models. These methods include Constant False Alarm Rate (CFAR) algorithms and deep learning approaches such as RCNN, YOLO, and SSD, among others. While these methods outperform traditional algorithms in SAR ship detection, challenges still exist in handling the arbitrary ship distributions and small target features in SAR remote sensing images. Existing models are complex, with a large number of parameters, hindering effective deployment. This paper introduces a YOLOv7 oriented bounding box SAR ship detection model (YOLOv7oSAR). The model employs a rotation box detection mechanism, uses the KLD loss function to enhance accuracy, and introduces a Bi-former attention mechanism to improve small target detection. By redesigning the network's width and depth and incorporating a lightweight P-ELAN structure, the model effectively reduces its size and computational requirements. The proposed model achieves high-precision detection results on the public RSDD dataset (94.8% offshore, 66.6% nearshore), and its generalization ability is validated on a custom dataset (94.2% overall detection accuracy).
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A Trash Detection Model Based on YOLOv7
    Liang, Hu
    Xu, Chao
    He, Tao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 300 - 303
  • [22] Lightweight strip steel defect detection algorithm based on improved YOLOv7
    Lu, Jianbo
    Yu, MiaoMiao
    Liu, Junyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] Lightweight Low-Light Object Detection Algorithm Based on YOLOv7
    Li Changyu
    Ge Lei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)
  • [24] Improved YOLOv7 Object Detection Algorithm for Fisheye Images
    Wu, Zhaodong
    Xu, Cheng
    Liu, Hongzhe
    Fu, Ying
    Jian, Muwei
    Computer Engineering and Applications, 2024, 60 (14) : 250 - 256
  • [25] YOLOv7-SN: Underwater Target Detection Algorithm Based on Improved YOLOv7
    Zhao, Ming
    Zhou, Huibo
    Li, Xue
    SYMMETRY-BASEL, 2024, 16 (05):
  • [26] MCA-YOLOv7: An Improved UAV Target Detection Algorithm Based on YOLOv7
    Qin, Zhiyong
    Chen, Dike
    Wang, Hongyuan
    IEEE ACCESS, 2024, 12 : 42642 - 42650
  • [27] Steel surface defect detection based on lightweight YOLOv7
    Shi, Tao
    Wu, Rongxin
    Zhu, Wenxu
    Ma, Qingliang
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 306 - 313
  • [28] Study on Lightweight Model of Maize Seedling Object Detection Based on YOLOv7
    Zhao, Kai
    Zhao, Lulu
    Zhao, Yanan
    Deng, Hanbing
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [29] YOLOv7-SiamFF: Industrial defect detection algorithm based on improved YOLOv7
    Yi, Feifan
    Zhang, Haigang
    Yang, Jinfeng
    He, Liming
    Mohamed, Ahmad Sufril Azlan
    Gao, Shan
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 114
  • [30] Helmet Detection Algorithm Based on Improved YOLOv7
    Yilihamu, Yaermaimaiti
    Liu, Yajie
    Xi, Lingfei
    Wang, Ruohao
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (06) : 642 - 655