RIATIG: Reliable and Imperceptible Adversarial Text-to-Image Generation with Natural Prompts

被引:9
|
作者
Liu, Han [1 ]
Wu, Yuhao [1 ]
Zhai, Shixuan [1 ]
Yuan, Bo [2 ]
Zhang, Ning [1 ]
机构
[1] Washington Univ, St Louis, MO 63110 USA
[2] Rutgers State Univ, Piscataway, NJ USA
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
D O I
10.1109/CVPR52729.2023.01972
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The field of text-to-image generation has made remarkable strides in creating high-fidelity and photorealistic images. As this technology gains popularity, there is a growing concern about its potential security risks. However, there has been limited exploration into the robustness of these models from an adversarial perspective. Existing research has primarily focused on untargeted settings, and lacks holistic consideration for reliability (attack success rate) and stealthiness (imperceptibility). In this paper, we propose RIATIG, a reliable and imperceptible adversarial attack against text-to-image models via inconspicuous examples. By formulating the example crafting as an optimization process and solving it using a genetic-based method, our proposed attack can generate imperceptible prompts for text-to-image generation models in a reliable way. Evaluation of six popular text-to-image generation models demonstrates the efficiency and stealthiness of our attack in both white-box and black-box settings. To allow the community to build on top of our findings, we've made the artifacts available(1).
引用
收藏
页码:20585 / 20594
页数:10
相关论文
共 50 条
  • [21] Best Prompts for Text-to-Image Models and How to Find Them
    Pavlichenko, Nikita
    Ustalov, Dmitry
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 2067 - 2071
  • [22] Robustness of Generative Adversarial CLIPs Against Single-Character Adversarial Attacks in Text-to-Image Generation
    Chanakya, Patibandla
    Harsha, Putla
    Pratap Singh, Krishna
    IEEE ACCESS, 2024, 12 : 162551 - 162563
  • [23] SEMANTICALLY INVARIANT TEXT-TO-IMAGE GENERATION
    Sah, Shagan
    Peri, Dheeraj
    Shringi, Ameya
    Zhang, Chi
    Dominguez, Miguel
    Savakis, Andreas
    Ptucha, Ray
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3783 - 3787
  • [24] Perceptual Pyramid Adversarial Networks for Text-to-Image Synthesis
    Gao, Lianli
    Chen, Daiyuan
    Song, Jingkuan
    Xu, Xing
    Zhang, Dongxiang
    Shen, Heng Tao
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8312 - 8319
  • [25] Shifted Diffusion for Text-to-image Generation
    Zhou, Yufan
    Liu, Bingchen
    Zhu, Yizhe
    Yang, Xiao
    Chen, Changyou
    Xu, Jinhui
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10157 - 10166
  • [26] PMGAN: pretrained model-based generative adversarial network for text-to-image generation
    Yu, Yue
    Yang, Yue
    Xing, Jingshuo
    VISUAL COMPUTER, 2025, 41 (01): : 303 - 314
  • [27] Text-to-Image Generation for Abstract Concepts
    Liao, Jiayi
    Chen, Xu
    Fu, Qiang
    Du, Lun
    He, Xiangnan
    Wang, Xiang
    Han, Shi
    Zhang, Dongmei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3360 - 3368
  • [28] Semantics Disentangling for Text-to-Image Generation
    Yin, Guojun
    Liu, Bin
    Sheng, Lu
    Yu, Nenghai
    Wang, Xiaogang
    Shao, Jing
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2322 - 2331
  • [29] Text-to-Image Generation with Multiscale Semantic Context-Aware Generative Adversarial Networks
    Dong, Pei
    Wu, Lei
    Meng, Lei
    Meng, Xiangxu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XII, ICIC 2024, 2024, 14873 : 192 - 203
  • [30] Perceptions and Realities of Text-to-Image Generation
    Oppenlaender, Jonas
    Silvennoinen, Johanna
    Paananen, Ville
    Visuri, Aku
    PROCEEDINGS OF THE 26TH INTERNATIONAL ACADEMIC MINDTREK, MINDTREK 2023, 2023, : 279 - 288