Toeplitz operators on Bergman spaces with exponential weights

被引:3
|
作者
Zhang, Yiyuan [1 ,2 ]
Wang, Xiaofeng [1 ,2 ]
Hu, Zhangjian [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
[2] Guangzhou Univ, Key Lab Math & Interdisciplinary Sci, Guangdong Higher Educ Inst, Guangzhou, Peoples R China
[3] Huzhou Univ, Dept Math, Huzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Toeplitz operators; Bergman spaces; Carleson measures; Schatten class; TRACE IDEAL CRITERIA; HANKEL-OPERATORS; ANALYTIC-FUNCTIONS; INTERPOLATION; KERNEL;
D O I
10.1080/17476933.2022.2034150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus on the weighted Bergman spaces A(phi)(p) in D with phi is an element of W-0. We first give characterizations of those finite positive Borel measures mu in D such that the embedding A(phi)(p) subset of L-mu(q) is bounded or compact for 0 < p, q < infinity. Then we describe bounded or compact Toeplitz operators T-mu from one Bergman space A(phi)(p) to another A(phi)(q) for all possible 0 < p, q < infinity. Finally, we characterize Schatten class Toeplitz operators on A(phi)(2).
引用
收藏
页码:974 / 1007
页数:34
相关论文
共 50 条