Device Scheduling in Over-the-Air Federated Learning Via Matching Pursuit

被引:7
|
作者
Bereyhi, Ali [1 ]
Vagollari, Adela [2 ]
Asaad, Saba [3 ]
Muller, Ralf R. [2 ]
Gerstacker, Wolfgang [2 ]
Poor, H. Vincent [4 ]
机构
[1] Univ Toronto, Wireless Comp Lab, Toronto, ON M5S 2E4, Canada
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Digital Commun, D-91058 Erlangen, Bayern, Germany
[3] York Univ, Next Generat Wireless Networks, Res Lab, Toronto, ON M3J 1P3, Canada
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Device scheduling; federated learning; matching pursuit; over-the-air computation; ANALOG FUNCTION COMPUTATION; ULTRA-DENSE NETWORKS; SIGNAL RECOVERY; ENABLING TECHNOLOGIES; ENERGY; ALGORITHMS; CHALLENGES;
D O I
10.1109/TSP.2023.3284376
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a class of low-complexity device scheduling algorithms for over-the-air federated learning via the method of matching pursuit. The proposed scheme tracks closely the close-to-optimal performance achieved by difference-of-convex programming, and outperforms significantly the well-known benchmark algorithms based on convex relaxation. Compared to the state-of-the-art, the proposed scheme imposes a drastically lower computational load on the system: for K devices and N antennas at the parameter server, the benchmark complexity scales with (N-2 + K)(3) + N-6 while the complexity of the proposed scheme scales with (KNq)-N-p for some 0 < p, q <= 2. The efficiency of the proposed scheme is confirmed through the convergence analysis and numerical experiments on CIFAR-10 dataset.
引用
收藏
页码:2188 / 2203
页数:16
相关论文
共 50 条
  • [11] Energy-Efficient Dynamic Device Scheduling for Over-the-Air Federated Learning in UAV Swarms
    Jiang, Bingqing
    Du, Jun
    Yang, Guowei
    Jiang, Chunxiao
    Liu, Chen-Feng
    Tian, Yu
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 170 - 175
  • [12] Dynamic Scheduling for Over-the-Air Federated Edge Learning With Energy Constraints
    Sun, Yuxuan
    Zhou, Sheng
    Niu, Zhisheng
    Gunduz, Deniz
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) : 227 - 242
  • [13] Empowering over-the-air personalized federated learning via RIS
    Wei SHI
    Jiacheng YAO
    Jindan XU
    Wei XU
    Lexi XU
    Chunming ZHAO
    Science China(Information Sciences), 2024, 67 (11) : 371 - 372
  • [14] Over-the-Air Clustered Federated Learning
    Sami, Hasin Us
    Guler, Basak
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7877 - 7893
  • [15] Over-the-Air Federated Graph Learning
    Wang, Zixin
    Zhou, Yong
    Shi, Yuanming
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 18669 - 18683
  • [16] Federated Linear Bandit Learning via Over-the-air Computation
    Wang, Jiali
    Jiang, Yuning
    Liu, Xin
    Wang, Ting
    Shi, Yuanming
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1363 - 1368
  • [17] Multiple Parallel Federated Learning via Over-the-Air Computation
    Shi, Gaoxin
    Guo, Shuaishuai
    Ye, Jia
    Saeed, Nasir
    Dang, Shuping
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 1252 - 1264
  • [18] Federated Learning in Wireless Networks via Over-the-Air Computations
    Oksuz, Halil Yigit
    Molinari, Fabio
    Sprekeler, Henning
    Raisch, Joerg
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4379 - 4386
  • [19] Federated Learning Over-the-Air by Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9143 - 9156
  • [20] Over-the-Air Decentralized Federated Learning
    Shi, Yandong
    Zhou, Yong
    Shi, Yuanming
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 455 - 460