Bilateral Peer-to-Peer Energy Trading via Coalitional Games

被引:5
|
作者
Raja, Aitazaz Ali [1 ]
Grammatico, Sergio [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
关键词
Games; Contracts; Peer-to-peer computing; Informatics; Game theory; Stability analysis; Costs; Distributed algorithms; mechanism design; multi-agent systems; smart grids; transactive energy; CONVERGENCE; NETWORKS;
D O I
10.1109/TII.2022.3196339
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a bilateral peer-to-peer (P2P) energy trading scheme under single-contract and multi-contract market setups, both as an assignment game, a special class of coalitional games. The proposed market formulation allows for efficient computation of a market equilibrium while keeping the desired economic properties offered by the coalitional games. Furthermore, our market model allows buyers to have heterogeneous preferences (product differentiation) over the energy sellers, which can be economic, social, or environmental. To address the problem of scalability in coalitional games, we design a novel distributed negotiation mechanism that utilizes the geometric structure of the equilibrium solution to improve the convergence speed. Our algorithm enables market participants (prosumers) to reach a consensus on a set of "stable" and "fair" bilateral contracts which encourages prosumer participation. The negotiation process is executed with virtually minimal information requirements on a time-varying communication network that in turn preserves privacy. We use operator-theoretic tools to rigorously prove its convergence. Numerical simulations illustrate the benefits of our negotiation protocol and show that the average execution time of a negotiation step is much faster than the benchmark.
引用
收藏
页码:6814 / 6824
页数:11
相关论文
共 50 条
  • [21] Blockchain-enabled Peer-to-Peer energy trading
    Wongthongtham, Pornpit
    Marrable, Daniel
    Abu-Salih, Bilal
    Liu, Xin
    Morrison, Greg
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 94
  • [22] Peer-to-peer energy trading using blockchain technology
    R, Sitharthan
    Padmanaban, Sanjeevikumar
    Dhanabalan, Shanmuga Sundar
    M, Rajesh
    Energy Reports, 2022, 8 : 2348 - 2350
  • [23] Blockchain-based Peer-to-Peer Energy Trading
    Martinez-Trejo, Diana
    2020 IEEE PES TRANSACTIVE ENERGY SYSTEMS CONFERENCE (TESC), 2020,
  • [24] Peer-to-peer energy trading among smart homes
    Alam, Muhammad Raisul
    St-Hilaire, Marc
    Kunz, Thomas
    APPLIED ENERGY, 2019, 238 : 1434 - 1443
  • [25] Review of Existing Peer-to-Peer Energy Trading Projects
    Zhang, Chenghua
    Wu, Jianzhong
    Long, Chao
    Cheng, Meng
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2563 - 2568
  • [26] Peer-to-peer energy trading using blockchain technology
    Sitharthan, R.
    Padmanaban, Sanjeevikumar
    Dhanabalan, Shanmuga Sundar
    Rajesh, M.
    ENERGY REPORTS, 2022, 8 : 2348 - 2350
  • [27] Distributed Ledger Technologies for Peer-to-Peer Energy Trading
    Jogunola, Olamide
    Hammoudeh, Mohammad
    Anoh, Kelvin
    Adebisi, Bamidele
    2020 IEEE ELECTRIC POWER AND ENERGY CONFERENCE (EPEC), 2020,
  • [28] Decentralized energy management of a hybrid building cluster via peer-to-peer transactive energy trading
    Ying, Chenhao
    Zou, Yunyang
    Xu, Yan
    APPLIED ENERGY, 2024, 372
  • [29] Privacy-Preserving Peer-to-Peer Energy Trading via Hybrid Secure Computations
    Liu, Junhong
    Long, Qinfei
    Liu, Rong-Peng
    Liu, Wenjie
    Cui, Xin
    Hou, Yunhe
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (02) : 1951 - 1964
  • [30] A peer-to-peer energy trading model for community microgrids with energy management
    Ravivarma, K.
    Lokeshgupta, B.
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2024, 17 (04) : 2538 - 2554