GraphCS: Graph-based client selection for heterogeneity in federated learning

被引:5
|
作者
Chang, Tao [1 ]
Li, Li [2 ]
Wu, MeiHan [1 ]
Yu, Wei [3 ]
Wang, Xiaodong [1 ]
Xu, ChengZhong [2 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Key Lab Parallel & Distributed Comp, Changsha, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Peoples R China
[3] China Elect Technol Grp Corp, Res Inst 30, Chengdu, Peoples R China
关键词
Federated learning; Client selection; Heterogeneity; ALGORITHMS;
D O I
10.1016/j.jpdc.2023.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning coordinates many mobile devices to train an artificial intelligence model while preserving data privacy collaboratively. Mobile devices are usually equipped with totally different hardware configurations, leading to various training capabilities. At the same time, the distribution of the local training data is highly heterogeneous across different clients. Randomly selecting the clients to participate in the training process results in poor model performance and low system efficiency. In this paper, we propose GraphCS, a graph-based client selection framework for heterogeneity in Federated Learning. GraphCS first measures the distribution coupling across the clients via the model gradients. After that, it divides the clients into different groups according to the diversity of the local datasets. At the same time, it well estimates the runtime training capability of each client by jointly considering the hardware configuration and resource contention caused by the concurrently running apps. With the distribution coupling information and runtime training capability, GraphCS selects the best clients in order to well balance the model accuracy and overall training progress. We evaluate the performance of GraphCS with mobile devices with different hardware configurations on various datasets. The experiment results show that our approach improves model accuracy up to 45.69%. Meanwhile, it reduces communication and computation overhead 87.35% and 89.48% at best, respectively. Furthermore, GraphCS accelerates the overall training process up to 35x. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 50 条
  • [31] Client Selection for Federated Learning With Label Noise
    Yang, Miao
    Qian, Hua
    Wang, Ximin
    Zhou, Yong
    Zhu, Honghin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2193 - 2197
  • [32] A Client Selection Method Based on Loss Function Optimization for Federated Learning
    Zeng, Yan
    Teng, Siyuan
    Xiang, Tian
    Zhang, Jilin
    Mu, Yuankai
    Ren, Yongjian
    Wan, Jian
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 1047 - 1064
  • [33] Client selection based weighted federated few-shot learning
    Xu, Xinlei
    Niu, Saisai
    Zhe, Wanga
    Li, Dongdong
    Yang, Hai
    Du, Wenli
    APPLIED SOFT COMPUTING, 2022, 128
  • [34] Fuzzy Logic Based Client Selection for Federated Learning in Vehicular Networks
    Cha, Narisu
    Du, Zhaoyang
    Wu, Celimuge
    Yoshinaga, Tsutomu
    Zhong, Lei
    Ma, Jing
    Liu, Fuqiang
    Ji, Yusheng
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2022, 3 : 39 - 50
  • [35] FedSAR for Heterogeneous Federated learning:A Client Selection Algorithm Based on SARSA
    Chen, Dufeng
    Jing, Rui
    Wu, Jiaqi
    Wang, Zehua
    Tian, Zijian
    Zhang, Fan
    Chen, Wei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14862 : 219 - 229
  • [36] Enhancing Federated Learning Performance Fairness via Collaboration Graph-Based Reinforcement Learning
    Xia, Yuexuan
    Ma, Benteng
    Dou, Qi
    Xia, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT X, 2024, 15010 : 263 - 272
  • [37] Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT
    Li, Zonghang
    He, Yihong
    Yu, Hongfang
    Kang, Jiawen
    Li, Xiaoping
    Xu, Zenglin
    Niyato, Dusit
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (18) : 17844 - 17857
  • [38] Joint Client and Cross-Client Edge Selection for Cost-Efficient Federated Learning of Graph Convolutional Networks
    Huang, Guangjing
    Chen, Xu
    Wu, Qiong
    Li, Jingyi
    Huang, Qianyi
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024,
  • [39] Graph-Based Traffic Forecasting via Communication-Efficient Federated Learning
    Zhang, Chenhan
    Zhang, Shiyao
    Yu, Shui
    Yu, James J. Q.
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 2041 - 2046
  • [40] Age of Information Based Client Selection for Wireless Federated Learning With Diversified Learning Capabilities
    Dong, Liran
    Zhou, Yiqing
    Liu, Ling
    Qi, Yanli
    Zhang, Yu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 14934 - 14945