Principles of tractor atom interferometry

被引:9
|
作者
Raithel, Georg [1 ]
Duspayev, Alisher [1 ]
Dash, Bineet [1 ]
Carrasco, Sebastian C. [2 ]
Goerz, Michael H. [2 ]
Vuletic, Vladan [3 ,4 ]
Malinovsky, Vladimir S. [2 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] DEVCOM Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
[3] MIT, Dept Phys, MIT Harvard Ctr Ultracold Atoms, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
atom interferometry; cold atoms in optical lattices; quantum optimal control; cold atoms in space; QUANTUM PHASE-TRANSITION; ULTRACOLD ATOMS; CONSTANT;
D O I
10.1088/2058-9565/ac9429
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present principles and possible design concepts for a tractor atom interferometer (TAI) based on three-dimensional confinement and transport of ultracold atoms. The confinement reduces device size and wave-packet dispersion, enables arbitrary holding times, and facilitates control to create complex trajectories that allow for optimization to enable fast splitting and recombination, to suppress detrimental nonadiabatic excitation, and to cancel unwanted sensitivity. Thus, the design allows for further advancement of compact, high-sensitivity, quantum sensing technology. In particular, we focus on the implementation of quantum-enhanced accelerometers and gyroscopes. We discuss TAT protocols for both spin-dependent and scalar trapping potentials. Using optimal control theory, we demonstrate the splitting of the wave function on a time scale two orders of magnitude shorter than a previous proposal using adiabatic dynamics, thus maximizing the time spent at full separation, where the interferometric phase is accumulated. The performance estimates for TAI give a promising perspective for atom-interferometry-based sensing, significantly exceeding the sensitivities of current state-of-the-art devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Robust atom optics for Bragg atom interferometry
    Louie, Garrett
    Chen, Zilin
    Deshpande, Tejas
    Kovachy, Timothy
    NEW JOURNAL OF PHYSICS, 2023, 25 (08):
  • [22] Adaptive atom-optics in atom interferometry
    Marable, ML
    Savard, TA
    Thomas, JE
    OPTICS COMMUNICATIONS, 1997, 135 (1-3) : 14 - 18
  • [23] Getting the measure of atom interferometry
    Dos Santos, Franck Pereira
    Landragin, Arnaud
    PHYSICS WORLD, 2007, 20 (11) : 32 - 37
  • [24] Diffraction phases in atom interferometry
    Büchner, M
    Delhuille, R
    Miffre, A
    Robilliard, C
    Champenois, C
    Vigué, J
    JOURNAL DE PHYSIQUE IV, 2004, 119 : 139 - 140
  • [25] Ultracold atom interferometry in space
    Lachmann, Maike D.
    Ahlers, Holger
    Becker, Dennis
    Dinkelaker, Aline N.
    Grosse, Jens
    Hellmig, Ortwin
    Muentinga, Hauke
    Schkolnik, Vladimir
    Seidel, Stephan T.
    Wendrich, Thijs
    Wenzlawski, Andre
    Carrick, Benjamin
    Gaaloul, Naceur
    Luedtke, Daniel
    Braxmaier, Claus
    Ertmer, Wolfgang
    Krutzik, Markus
    Laemmerzahl, Claus
    Peters, Achim
    Schleich, Wolfgang P.
    Sengstock, Klaus
    Wicht, Andreas
    Windpassinger, Patrick
    Rasel, Ernst M.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [26] Atom interferometry and the gravitational redshift
    Sinha, Supurna
    Samuel, Joseph
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (14)
  • [27] Testing gravity with atom interferometry
    Tino, G. M.
    ATOM INTERFEROMETRY, 2014, 188 : 457 - 491
  • [28] Atom interferometry with Mg beams
    Bagayev, SN
    Baraulia, VI
    Bonert, AE
    Goncharov, AN
    Seydaliev, MR
    Tychkov, AS
    LASER PHYSICS, 2001, 11 (11) : 1178 - 1186
  • [29] MAGNETIC COHERENCES IN ATOM INTERFEROMETRY
    SCHMIEDMAYER, J
    EKSTROM, CR
    CHAPMAN, MS
    HAMMOND, TD
    PRITCHARD, DE
    JOURNAL DE PHYSIQUE II, 1994, 4 (11): : 2029 - 2042
  • [30] Atom Interferometry in an Optical Cavity
    Hamilton, Paul
    Jaffe, Matt
    Brown, Justin
    Maisenbacher, Lothar
    Estey, Brian
    Mueller, Holger
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,