机构:
Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USAUniv Michigan, Dept Phys, Ann Arbor, MI 48109 USA
Raithel, Georg
[1
]
论文数: 引用数:
h-index:
机构:
Duspayev, Alisher
[1
]
Dash, Bineet
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USAUniv Michigan, Dept Phys, Ann Arbor, MI 48109 USA
Dash, Bineet
[1
]
Carrasco, Sebastian C.
论文数: 0引用数: 0
h-index: 0
机构:
DEVCOM Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USAUniv Michigan, Dept Phys, Ann Arbor, MI 48109 USA
Carrasco, Sebastian C.
[2
]
Goerz, Michael H.
论文数: 0引用数: 0
h-index: 0
机构:
DEVCOM Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USAUniv Michigan, Dept Phys, Ann Arbor, MI 48109 USA
Goerz, Michael H.
[2
]
Vuletic, Vladan
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Phys, MIT Harvard Ctr Ultracold Atoms, 77 Massachusetts Ave, Cambridge, MA 02139 USA
MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USAUniv Michigan, Dept Phys, Ann Arbor, MI 48109 USA
Vuletic, Vladan
[3
,4
]
Malinovsky, Vladimir S.
论文数: 0引用数: 0
h-index: 0
机构:
DEVCOM Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USAUniv Michigan, Dept Phys, Ann Arbor, MI 48109 USA
Malinovsky, Vladimir S.
[2
]
机构:
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] DEVCOM Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
[3] MIT, Dept Phys, MIT Harvard Ctr Ultracold Atoms, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
atom interferometry;
cold atoms in optical lattices;
quantum optimal control;
cold atoms in space;
QUANTUM PHASE-TRANSITION;
ULTRACOLD ATOMS;
CONSTANT;
D O I:
10.1088/2058-9565/ac9429
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We present principles and possible design concepts for a tractor atom interferometer (TAI) based on three-dimensional confinement and transport of ultracold atoms. The confinement reduces device size and wave-packet dispersion, enables arbitrary holding times, and facilitates control to create complex trajectories that allow for optimization to enable fast splitting and recombination, to suppress detrimental nonadiabatic excitation, and to cancel unwanted sensitivity. Thus, the design allows for further advancement of compact, high-sensitivity, quantum sensing technology. In particular, we focus on the implementation of quantum-enhanced accelerometers and gyroscopes. We discuss TAT protocols for both spin-dependent and scalar trapping potentials. Using optimal control theory, we demonstrate the splitting of the wave function on a time scale two orders of magnitude shorter than a previous proposal using adiabatic dynamics, thus maximizing the time spent at full separation, where the interferometric phase is accumulated. The performance estimates for TAI give a promising perspective for atom-interferometry-based sensing, significantly exceeding the sensitivities of current state-of-the-art devices.