Principles of tractor atom interferometry

被引:9
|
作者
Raithel, Georg [1 ]
Duspayev, Alisher [1 ]
Dash, Bineet [1 ]
Carrasco, Sebastian C. [2 ]
Goerz, Michael H. [2 ]
Vuletic, Vladan [3 ,4 ]
Malinovsky, Vladimir S. [2 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] DEVCOM Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
[3] MIT, Dept Phys, MIT Harvard Ctr Ultracold Atoms, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
atom interferometry; cold atoms in optical lattices; quantum optimal control; cold atoms in space; QUANTUM PHASE-TRANSITION; ULTRACOLD ATOMS; CONSTANT;
D O I
10.1088/2058-9565/ac9429
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present principles and possible design concepts for a tractor atom interferometer (TAI) based on three-dimensional confinement and transport of ultracold atoms. The confinement reduces device size and wave-packet dispersion, enables arbitrary holding times, and facilitates control to create complex trajectories that allow for optimization to enable fast splitting and recombination, to suppress detrimental nonadiabatic excitation, and to cancel unwanted sensitivity. Thus, the design allows for further advancement of compact, high-sensitivity, quantum sensing technology. In particular, we focus on the implementation of quantum-enhanced accelerometers and gyroscopes. We discuss TAT protocols for both spin-dependent and scalar trapping potentials. Using optimal control theory, we demonstrate the splitting of the wave function on a time scale two orders of magnitude shorter than a previous proposal using adiabatic dynamics, thus maximizing the time spent at full separation, where the interferometric phase is accumulated. The performance estimates for TAI give a promising perspective for atom-interferometry-based sensing, significantly exceeding the sensitivities of current state-of-the-art devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Tractor atom interferometry
    Duspayev, A.
    Raithel, G.
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [2] Rotation sensing using tractor atom interferometry
    Dash, Bineet
    Goerz, Michael H.
    Duspayev, Alisher
    Carrasco, Sebastian C.
    Malinovsky, Vladimir S.
    Raithel, Georg
    AVS QUANTUM SCIENCE, 2024, 6 (01):
  • [3] Atom interferometry:: principles and applications to fundamental physics
    Delhuille, R
    Champenois, C
    Büchner, M
    Mathevet, R
    Rizzo, C
    Robilliard, C
    Vigué, J
    QUANTUM ELECTRODYNAMICS AND PHYSICS OF THE VACUUM, 2001, 564 : 192 - 199
  • [4] Atom interferometry
    Chu, S
    COHERENT ATOMIC MATTER WAVES, 2001, 72 : 319 - 370
  • [5] Atom interferometry
    Landragin, A
    Cheinet, P
    Leduc, F
    Bouyer, P
    OPTICS IN ASTROPHYSICS, 2005, 198 : 359 - 366
  • [6] ATOM INTERFEROMETRY
    Adams, C. S.
    Carnal, O.
    Mlynek, J.
    ADVANCES IN ATOMIC MOLECULAR AND OPTICAL PHYSICS <D>, 1994, 34 : 1 - 33
  • [7] Atom interferometry
    Miffre, A.
    Jacquey, M.
    Buchner, M.
    Trenec, G.
    Vigue, J.
    PHYSICA SCRIPTA, 2006, 74 (02) : C15 - C23
  • [8] Atom interferometry
    Shimizu, F
    QUANTUM COHERENCE AND DECOHERENCE, 1999, : 109 - 114
  • [9] Atom Interferometry with Floquet Atom Optics
    Wilkason, Thomas
    Nantel, Megan
    Rudolph, Jan
    Jiang, Yijun
    Garber, Benjamin E.
    Swan, Hunter
    Carman, Samuel P.
    Abe, Mahiro
    Hogan, Jason M.
    PHYSICAL REVIEW LETTERS, 2022, 129 (18)
  • [10] Polychromatic atom optics for atom interferometry
    Samuel Lellouch
    Oliver Ennis
    Ramiz Haditalab
    Mehdi Langlois
    Michael Holynski
    EPJ Quantum Technology, 2023, 10