Two-phase Porous Media Flow Model Based on the Incompressible Navier-Stokes Equation

被引:1
|
作者
Ma, Hui [1 ]
Kinzer-Ursem, Tamara L. [1 ]
Linnes, Jacqueline C. [1 ]
机构
[1] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
RICHARDS EQUATION; WASHBURN EQUATION; PAPER; PERMEABILITY; SATURATION; TRANSPORT; DEVICES; WATER; ASSAY;
D O I
10.1021/acs.analchem.3c05982
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Two-phase porous media flow is important in many applications from drug delivery to groundwater diffusion and oil recovery and is of particular interest to biomedical diagnostic test developers using cellulose and nitrocellulose membranes with limited fluid sample volumes. This work presents a new two-phase porous media flow model based on the incompressible Navier-Stokes equation. The model aims to address the limitations of existing methods by incorporating a partial saturation distribution in porous media to account for limited fluid volumes. The basic parameters of the model are the pore size distribution and the contact angle. To validate the model, we solved five analytical solutions and compared them to corresponding experimental data. The experimentally measured penetration length data agreed with the model predictions, demonstrating model accuracy. Our findings suggest that this new two-phase porous media flow model can provide a valuable tool for researchers developing fluidic assays in paper and other porous media.
引用
收藏
页码:5265 / 5273
页数:9
相关论文
共 50 条
  • [21] A Stable Parametric Finite Element Discretization of Two-Phase Navier-Stokes Flow
    Barrett, Johnw.
    Garcke, Harald
    Nuernberg, Robert
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (01) : 78 - 117
  • [22] A Graphic Processing Unit (GPU) based implementation of an incompressible two-phase flow model in porous media
    Leonardo Teja-Juarez, V
    de la Cruz, Luis M.
    GEOFISICA INTERNACIONAL, 2018, 57 (03): : 205 - 222
  • [23] CALCULATION OF PERMEABILITY OF POROUS-MEDIA FROM NAVIER-STOKES EQUATION
    AZZAM, MIS
    DULLIEN, FAL
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1976, 15 (04): : 281 - 285
  • [24] Local statistics of immiscible and incompressible two-phase flow in porous media
    Fyhn, Hursanay
    Sinha, Santanu
    Hansen, Alex
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 616
  • [25] Homogenization of nonisothermal immiscible incompressible two-phase flow in porous media
    Amaziane, B.
    Jurak, M.
    Pankratov, L.
    Piatnitski, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 43 : 192 - 212
  • [26] Simulation of incompressible two-phase flow in porous media with large timesteps
    Cogswell, Daniel A.
    Szulczewski, Michael L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 345 : 856 - 865
  • [27] From the Boltzmann equation to the incompressible Navier-Stokes equations
    Golse, Francois
    RECENT ADVANCES IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 65 : 171 - 192
  • [28] AN EXPONENTIAL TIME INTEGRATOR FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATION
    Kooij, Gijs L.
    Botchev, Mike A.
    Geurts, Bernard J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : B684 - +
  • [29] On a new pseudocompressibility method for the incompressible Navier-Stokes equation
    Shen, J
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (01) : 71 - 90
  • [30] Discrete exterior calculus discretization of two-phase incompressible Navier-Stokes equations with a conservative phase field method
    Wang, Minmiao
    Jagad, Pankaj
    Hirani, Anil N.
    Samtaney, Ravi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 488