Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed (Brassica napus L.)

被引:4
|
作者
Ibrahim, Sani [1 ,2 ]
Ahmad, Nazir [1 ]
Kuang, Lieqiong [1 ]
Li, Keqi [1 ]
Tian, Ze [1 ]
Sadau, Salisu Bello [3 ]
Tajo, Sani Muhammad [3 ]
Wang, Xinfa [1 ]
Wang, Hanzhong [1 ]
Dun, Xiaoling [1 ]
机构
[1] Chinese Acad Agr Sci, Minist Agr & Rural Affairs, Key Lab Biol & Genet Improvement Oil Crops, Oil Crops Res Inst, Wuhan, Peoples R China
[2] Bayero Univ, Coll Nat & Pharmaceut Sci, Fac Life Sci, Dept Plant Biol, Kano, Nigeria
[3] Chinese Acad Agr Sci, Inst Cotton Res, State Key Lab Cotton Biol, ICR,CAAS, Anyang, Peoples R China
来源
关键词
root; transcription factors; RNA-seq; DEGs; WGCNA; potassium utilization efficiency; ARABIDOPSIS-THALIANA; SYSTEM ARCHITECTURE; AUXIN; EXPRESSION; RESPONSES; STRESS; INSIGHTS; DROUGHT; TRAITS; HAIRS;
D O I
10.3389/fpls.2023.1194914
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Global transcriptome analysis reveals potential genes associated with genic male sterility of rapeseed (Brassica napus L.)
    Jiang, Jianxia
    Xu, Pengfei
    Zhang, Junying
    Li, Yanli
    Zhou, Xirong
    Jiang, Meiyan
    Zhu, Jifeng
    Wang, Weirong
    Yang, Liyong
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [2] Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.)
    Raza, Ali
    Su, Wei
    Hussain, Muhammad Azhar
    Mehmood, Sundas Saher
    Zhang, Xuekun
    Cheng, Yong
    Zou, Xiling
    Lv, Yan
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [3] Transcriptome Analysis Reveals Key Cold-Stress-Responsive Genes in Winter Rapeseed (Brassica rapa L.)
    Ma, Li
    Coulter, Jeffrey A.
    Liu, Lijun
    Zhao, Yuhong
    Chang, Yu
    Pu, Yuanyuan
    Zeng, Xiucun
    Xu, Yaozhao
    Wu, Junyan
    Fang, Yan
    Bai, Jing
    Sun, Wancang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (05)
  • [4] Cluster analysis in rapeseed (Brassica napus L.)
    Mahasi, Mabel Jendeka
    Kamundia, John Waweru
    AFRICAN JOURNAL OF AGRICULTURAL RESEARCH, 2007, 2 (09): : 409 - 411
  • [5] Transcriptome analysis reveals genes expression pattern of seed response to heat stress in Brassica napus L.
    Guizhen Gao
    Jihong Hu
    Xiaojun Zhang
    Fugui Zhang
    Mei Li
    Xiaoming Wu
    OilCropScience, 2021, 6 (02) : 87 - 96
  • [6] Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.)
    Shah, Smit
    Weinholdt, Claus
    Jedrusik, Nicole
    Molina, Carlos
    Zou, Jun
    Grosse, Ivo
    Schiessl, Sarah
    Jung, Christian
    Emrani, Nazgol
    PLANT CELL AND ENVIRONMENT, 2018, 41 (08): : 1935 - 1947
  • [7] Silicon supply affects the root transcriptome of Brassica napus L.
    Cylia Haddad
    Jacques Trouverie
    Mustapha Arkoun
    Jean-Claude Yvin
    José Caïus
    Véronique Brunaud
    Philippe Laîné
    Philippe Etienne
    Planta, 2019, 249 : 1645 - 1651
  • [8] Silicon supply affects the root transcriptome of Brassica napus L.
    Haddad, Cylia
    Trouverie, Jacques
    Arkoun, Mustapha
    Yvin, Jean-Claude
    Caius, Jose
    Brunaud, Veronique
    Laine, Philippe
    Etienne, Philippe
    PLANTA, 2019, 249 (05) : 1645 - 1651
  • [9] Integration of GWAS and transcriptome analysis to identify temperature-dependent genes involved in germination of rapeseed (Brassica napus L.)
    Wang, Ruisen
    Wu, Guangyu
    Zhang, Jingyi
    Hu, Weizhen
    Yao, Xiangtan
    Jiang, Lixi
    Zhu, Yang
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [10] Identification of Alkaline Salt Tolerance Genes in Brassica napus L. by Transcriptome Analysis
    Xu, Yu
    Tao, Shunxian
    Zhu, Yunlin
    Zhang, Qi
    Li, Ping
    Wang, Han
    Zhang, Yan
    Bakirov, Aldiyar
    Cao, Hanming
    Qin, Mengfan
    Wang, Kai
    Shi, Yiji
    Liu, Xiang
    Zheng, Lin
    Xu, Aixia
    Huang, Zhen
    GENES, 2022, 13 (08)