Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.)

被引:39
|
作者
Shah, Smit [1 ]
Weinholdt, Claus [2 ]
Jedrusik, Nicole [1 ]
Molina, Carlos [1 ]
Zou, Jun [3 ]
Grosse, Ivo [2 ]
Schiessl, Sarah [4 ]
Jung, Christian [1 ]
Emrani, Nazgol [1 ]
机构
[1] Christian Albrechts Univ Kiel, Plant Breeding Inst, Olshausenstr 40, D-24098 Kiel, Germany
[2] Martin Luther Univ Halle Wittenberg, Inst Comp Sci, Halle, Saale, Germany
[3] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan, Hubei, Peoples R China
[4] Justus Liebig Univ, IFZ Res Ctr Biosyst Land Use & Nutr, Dept Plant Breeding, Giessen, Germany
来源
PLANT CELL AND ENVIRONMENT | 2018年 / 41卷 / 08期
关键词
association analysis; differentially expressed genes; genetic mapping; pleiotropic effects; RNA-seq; vernalization; yield; LOCUS-C; VERNALIZATION; EXPRESSION; GENOME; PROTEIN; QTL; FLC; ARCHITECTURE; HOMOLOGS; PATTERNS;
D O I
10.1111/pce.13353
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rapeseed (Brassica napus L.), one of the most important sources of vegetable oil and protein-rich meals worldwide, is adapted to different geographical regions by modification of flowering time. Rapeseed cultivars have different day length and vernalization requirements, which categorize them into winter, spring, and semiwinter ecotypes. To gain a deeper insight into genetic factors controlling floral transition in B.napus, we performed RNA sequencing (RNA-seq) in the semiwinter doubled haploid line, Ningyou7, at different developmental stages and temperature regimes. The expression profiles of more than 54,000 gene models were compared between different treatments and developmental stages, and the differentially expressed genes were considered as targets for association analysis and genetic mapping to confirm their role in floral transition. Consequently, 36 genes with association to flowering time, seed yield, or both were identified. We found novel indications for neofunctionalization in homologs of known flowering time regulators like VIN3 and FUL. Our study proved the potential of RNA-seq along with association analysis and genetic mapping to identify candidate genes for floral transition in rapeseed. The candidate genes identified in this study could be subjected to genetic modification or targeted mutagenesis and genotype building to breed rapeseed adapted to certain environments.
引用
收藏
页码:1935 / 1947
页数:13
相关论文
共 50 条
  • [1] The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L.
    Cai, C. C.
    Tu, J. X.
    Fu, T. D.
    Chen, B. Y.
    RUSSIAN JOURNAL OF GENETICS, 2008, 44 (03) : 326 - 333
  • [2] The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L.
    C. C. Cai
    J. X. Tu
    T. D. Fu
    B. Y. Chen
    Russian Journal of Genetics, 2008, 44 : 326 - 333
  • [3] Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.)
    Xu, Liping
    Hu, Kaining
    Zhang, Zhenqian
    Guan, Chunyun
    Chen, Song
    Hua, Wei
    Li, Jiana
    Wen, Jing
    Yi, Bin
    Shen, Jinxiong
    Ma, Chaozhi
    Tu, Jinxing
    Fu, Tingdong
    DNA RESEARCH, 2016, 23 (01) : 43 - 52
  • [4] Genetic Analysis on Flowering Time and Root System in Brassica napus L.
    Rahman, Mukhlesur
    McClean, Phillip
    CROP SCIENCE, 2013, 53 (01) : 141 - 147
  • [5] Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.)
    Raza, Ali
    Su, Wei
    Hussain, Muhammad Azhar
    Mehmood, Sundas Saher
    Zhang, Xuekun
    Cheng, Yong
    Zou, Xiling
    Lv, Yan
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [6] Genetic analysis on oil content in rapeseed (Brassica napus L.)
    Wang, Xinfa
    Liu, Guihua
    Yang, Qing
    Hua, Wei
    Liu, Jing
    Wang, Hanzhong
    EUPHYTICA, 2010, 173 (01) : 17 - 24
  • [7] Genetic analysis on oil content in rapeseed (Brassica napus L.)
    Xinfa Wang
    Guihua Liu
    Qing Yang
    Wei Hua
    Jing Liu
    Hanzhong Wang
    Euphytica, 2010, 173 : 17 - 24
  • [8] Genetic dissection of flowering time and fine mapping of qFT.A02-1 in rapeseed (Brassica napus L.)
    Li, Yanling
    Li, Xin
    Du, Dezhi
    Ma, Qianru
    Zhao, Zhi
    Wang, Long
    Zhang, Yongshun
    Shi, Huiqin
    Zhao, Hongping
    Li, Huaxin
    Pei, Damei
    Zhao, Zhigang
    Tang, Guoyong
    Liu, Haidong
    Li, Haojie
    Xiao, Lu
    THEORETICAL AND APPLIED GENETICS, 2025, 138 (04)
  • [9] Morphological and genetic analysis of a cleistogamous mutant in rapeseed (Brassica napus L.)
    Shah Faisal
    Yuan Guo
    Shan Zang
    Biting Cao
    Gaoping Qu
    Shengwu Hu
    Genetic Resources and Crop Evolution, 2018, 65 : 397 - 403
  • [10] Morphological and genetic analysis of a cleistogamous mutant in rapeseed (Brassica napus L.)
    Faisal, Shah
    Guo, Yuan
    Zang, Shan
    Cao, Biting
    Qu, Gaoping
    Hu, Shengwu
    GENETIC RESOURCES AND CROP EVOLUTION, 2018, 65 (02) : 397 - 403