Convolutional Neural Network-Based Method for Predicting Oxygen Content at the End Point of Converter

被引:14
|
作者
Wang, Zhongliang [1 ]
Bao, Yanping [1 ]
Gu, Chao [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met, 30 Xueyuan Rd, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
conventional neural networks; converter end points; oxygen contents; prediction models; STEELMAKING PROCESS; MODEL; STEEL;
D O I
10.1002/srin.202200342
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The main factor affecting the cleanliness of steel is inclusions, most of which are deoxidation products. The greater the oxygen content fluctuation at the converter's end point, the more unstable the inclusion control. A large amount of charging, operation, and sampling data is collected during the converter smelting, but it is not fully utilized, and the deoxidizing alloy addition still relies on manual experience. Herein, the representative convolutional neural network (CNN) of deep learning is adopted, and the number of convolutional layers, convolutional kernel size, and the number of convolutional kernels are optimized to establish the best prediction model of the converter end point. Its root mean square error, mean absolute error, and mean absolute percentage error are 35.29%, 25.59%, and 7.30%, respectively, which are superior to the back propagation neural network. This CNN prediction model uses 1300 sets of preprocessed data containing 23 indicator variables, of which 1200 sets of data are used for training and 100 sets for model validation. Within the +/- 50 ppm error scope, the model prediction hit rate can reach 87%, and when within the +/- 70 ppm error scope, the hit rate is 93%.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A convolutional neural network-based method for workpiece surface defect detection
    Xing, Junjie
    Jia, Minping
    MEASUREMENT, 2021, 176
  • [22] A Convolutional Neural Network-Based Method for Small Traffic Sign Detection
    Zhou S.
    Zhi X.
    Liu D.
    Ning H.
    Jiang L.
    Shi F.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (11): : 1626 - 1632
  • [23] Convolutional neural network-based low light image enhancement method
    Guo, J.
    COMPUTER OPTICS, 2024, 48 (05) : 745 - 752
  • [24] A Convolutional Neural Network-Based Stress Prediction Method for Airfoil Structures
    Jia, Wendi
    Chen, Quanlong
    AEROSPACE, 2024, 11 (12)
  • [25] Convolutional neural network-based damage detection method for building structures
    Oh, Byung Kwan
    Glisic, Branko
    Park, Hyo Seon
    SMART STRUCTURES AND SYSTEMS, 2021, 27 (06) : 903 - 916
  • [26] A Convolutional Neural Network-Based Defect Recognition Method for Power Insulator
    Li, Nan
    Zeng, Dejun
    Zhao, Yun
    Wang, Jiahao
    Wang, Bo
    PROCESSES, 2024, 12 (10)
  • [27] Function Point Method Based on Hierarchical Convolutional Neural Network
    Jie, Guo
    ICIME 2018: PROCEEDINGS OF THE 2018 10TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT AND ENGINEERING, 2018, : 1 - 4
  • [28] Convolutional Neural Network-based Virtual Screening
    Shan, Wenying
    Li, Xuanyi
    Yao, Hequan
    Lin, Kejiang
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (10) : 2033 - 2047
  • [29] A Semisupervised Graph Convolutional Neural Network-based Earth Station Network Planning Method
    Zhao, Honghua
    Sun, Xuemiao
    Hu, Guyu
    Ding, Ke
    2024 INTERNATIONAL CONFERENCE ON UBIQUITOUS COMMUNICATION, UCOM 2024, 2024, : 411 - 415
  • [30] A New Convolutional Neural Network-Based Steganalysis Method for Content-Adaptive Image Steganography in the Spatial Domain
    Xiang, Zhili
    Sang, Jun
    Zhang, Qian
    Cai, Bin
    Xia, Xiaofeng
    Wu, Weiqun
    IEEE ACCESS, 2020, 8 : 47013 - 47020