Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments

被引:19
|
作者
Li, Yanghui [1 ]
Wei, Zhaosheng [1 ]
Wang, Haijun [1 ]
Wu, Peng [1 ]
Zhang, Shuheng [1 ]
You, Zeshao [1 ]
Liu, Tao [1 ]
Huang, Lei [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Peoples R China
关键词
Natural gas hydrate; Permeability; Heterogeneous; Effective stress; Hydrate saturation; METHANE HYDRATE; MODEL; SAND; FLOW;
D O I
10.1016/j.energy.2024.130717
中图分类号
O414.1 [热力学];
学科分类号
摘要
The permeability characteristic of hydrate-bearing sediments (HBSs) is an essential factor for assessing the exploiting potential of target area. The two trial tests in the South China Sea have demonstrated the production feasibility of clayey hydrate reservoirs, and further clarifying main controlling factors of the permeability characteristic is an essential prerequisite for commercial development. However, the current studies mainly focus on homogeneous HBSs with different saturations and porosities, ignoring the natural spatial heterogeneity of hydrate since the sedimentary and accumulation history. In this study, spatial heterogeneous hydrate (0-23.1%) was generated in montmorillonite specimens, and effective stress (1-5 MPa) was applied. The results show that 1) HBSs permeability with heterogeneity hydrate occurrence presents an exponential-like relationship with saturation. 2) Heterogeneous hydrate occurrence would reduce the permeability sensitivity to saturation. 3) The permeability of heterogeneous HBSs decreases in a power function trend with increasing effective stress. 4) The heterogeneity reduces compression effect and decreases permeability damage rate. 5) Increasing hydrate spatial heterogeneity would decrease HBSs permeability.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A cohesionless micromechanical model for gas hydrate-bearing sediments
    Cohen, Eitan
    Klar, Assaf
    GRANULAR MATTER, 2019, 21 (02)
  • [22] An elastoplastic constitutive model for gas hydrate-bearing sediments
    Liu L.
    Yao Y.
    Zhang X.
    Lu X.
    Wang S.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (02): : 556 - 566
  • [23] A cohesionless micromechanical model for gas hydrate-bearing sediments
    Eitan Cohen
    Assaf Klar
    Granular Matter, 2019, 21
  • [24] A hypoplastic model for gas hydrate-bearing sandy sediments
    Zhang, Xuhui
    Lin, Jia
    Lu, Xiaobing
    Liu, Lele
    Liu, Changling
    Li, Mingyao
    Su, Yewang
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2018, 42 (07) : 931 - 942
  • [25] Modeling of wave reflection in gas hydrate-bearing sediments
    Qiu, Haomiao
    Xia, Tangdai
    Yu, Bingqi
    Chen, Weiyun
    WAVE MOTION, 2019, 85 : 67 - 83
  • [26] Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico
    Daigle, Hugh
    Cook, Ann
    Malinverno, Alberto
    MARINE AND PETROLEUM GEOLOGY, 2015, 68 : 551 - 564
  • [27] A Novel Theoretical Method for Upscaling Permeability in Hydrate-Bearing Sediments
    Gao, Xiwei
    Lei, Gang
    Zhao, Yingjie
    Liao, Qinzhuo
    Ning, Fulong
    WATER RESOURCES RESEARCH, 2024, 60 (10)
  • [28] A fractal model for the relative permeability prediction of hydrate-bearing sediments
    Liu LeLe
    Zhang Zhun
    Ning FuLong
    Li ChengFeng
    Cai JianChao
    Wang DaiGang
    Liu ChangLing
    Wu NengYou
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2019, 49 (03)
  • [29] Influence of gas hydrate saturation and pore habits on gas relative permeability in gas hydrate-bearing sediments: Theory, experiment and case study
    Liu, Xuefeng
    Dong, Huaimin
    Yan, Weichao
    Arif, Muhammad
    Zhang, Yihuai
    Golsanami, Naser
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 95
  • [30] A Borehole Acoustic Calculation Approach with Gas Hydrate Saturation Inversion in Gas Hydrate-Bearing Sediments
    Liu, Lin
    Zhang, Xiumei
    Wang, Xiuming
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (02)