Orbit codes of finite Abelian groups and lattices

被引:0
|
作者
Mesnager, Sihem [1 ,2 ,3 ]
Raja, Rameez [4 ]
机构
[1] Univ Paris VIII, Dept Math, F-93526 St denis, France
[2] Univ Sorbonne Paris Nord, Lab Anal Geometry & Applicat LAGA, F-93430 Villetaneuse, France
[3] Polytech Inst Paris, Telecom Paris, F-91120 Palaiseau, France
[4] Natl Inst Technol, Dept Math, Srinagar 190006, Jammu And Kashm, India
关键词
Finite Abelian group; Group action; Homomorphism; Automorphism; Code; CONVOLUTIONAL-CODES;
D O I
10.1016/j.disc.2024.113900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper constructs a class of lattices whose discrete analogues are variable-length nonlinear codes. The well-known discrete analogue of lattices and linear codes inspires our approach. We next design a variable length binary non -linear code called automorphism orbit code from a finite abelian p-group of rank greater than 1, where p is a prime. For each finite abelian p-group, codewords of the automorphism orbit code are variablelength codewords called automorphism orbit codewords. The homomorphisms between groups determine homomorphism codes, whereas automorphism orbit codes are specified by partitions of a number, orbits of group action, homomorphisms and automorphisms of groups. For some groups G and 7-l, we shall use elements of Hom(G, 7-l) to create a cover relation for bit strings of codewords of an automorphism orbit code and formulate a lattice of variable length non -linear codes. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] An efficient algorithm for constructing minimal trellises for codes over finite Abelian groups
    Vazirani, VV
    Saran, H
    Rajan, BS
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) : 1839 - 1854
  • [22] COHEN-MACAULAY TYPES OF SUBGROUP LATTICES OF FINITE ABELIAN P-GROUPS
    MORITA, H
    GRAPHS AND COMBINATORICS, 1995, 11 (03) : 275 - 283
  • [23] Ensembles of codes over Abelian groups
    Como, G
    Fagnani, F
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 1788 - 1792
  • [24] ABELIAN NON-CYCLIC ORBIT CODES AND MULTISHOT SUBSPACE CODES
    Bastos, Gustavo Terra
    Palazzo Junior, Reginaldo
    Guerreiro, Marines
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (04) : 631 - 650
  • [25] AN IDENTITY FOR SUBGROUP LATTICES OF ABELIAN-GROUPS
    PALFY, PP
    SZABO, C
    ALGEBRA UNIVERSALIS, 1995, 33 (02) : 191 - 195
  • [26] A NOTE ON FINITE ABELIAN GROUPS
    PAIGE, LJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 49 - 49
  • [27] Decomposing finite Abelian groups
    Cheung, Kevin K. H.
    Mosca, Michele
    Quantum Information and Computation, 2001, 1 (03): : 26 - 32
  • [28] ISOMORPHISM OF FINITE ABELIAN GROUPS
    MCHAFFEY, R
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (01): : 48 - &
  • [29] The reconstructibility of finite abelian groups
    Pebody, L
    COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (06): : 867 - 892
  • [30] Complexity of Quasivariety Lattices of Pointed Abelian Groups
    Imanaliev, M. I.
    Nurakunov, A. M.
    DOKLADY MATHEMATICS, 2012, 85 (03) : 391 - 393