Crude oil price prediction using deep reinforcement learning

被引:13
|
作者
Liang, Xuedong [1 ,2 ]
Luo, Peng [1 ]
Li, Xiaoyan [1 ]
Wang, Xia [3 ]
Shu, Lingli [1 ]
机构
[1] Sichuan Univ, Business Sch, Chengdu 610000, Peoples R China
[2] Sichuan Univ, Econ & Enterprise Dev Inst, Chengdu 610000, Peoples R China
[3] Sichuan Univ, Inst Disaster Management & Reconstruct, Chengdu 610207, Peoples R China
基金
中国国家自然科学基金;
关键词
Crude oil price forecasting; Natural resource prices; Time-series forecasting; Benchmark oil price; Deep reinforcement learning; METHODOLOGY; INDICATORS; DYNAMICS; NETWORK; IMPACT;
D O I
10.1016/j.resourpol.2023.103363
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crude oil price forecasting has received considerable attention owing to its significance in the commodity market and non-linear complexity in forecasting tasks. This study aims to develop a novel deep reinforcement learning algorithm for multi-step ahead crude oil price forecasting in three major commodity exchanges. The proposed algorithm includes two main improvements: (a) A dynamic action exploration mechanism based on the stochastic processes conforming to commodity price fluctuations is designed for accuracy and generalization. (b) A dynamic update policy of network parameters based on approximate optimization theory is developed to improve the network's learning efficiency. The algorithm's effectiveness is experimentally verified and compared with five state-of-the-art algorithms. The main findings are as follows. (a) DRL's forecasting ability is developed in crude oil price forecasting, which may be extended to the forecasting of other natural resource prices. (b) The proposed algorithm can be applied to the data of the world's three major crude oil price benchmarks with considerable universality. (c) The accuracy of the proposed algorithm declines indistinctively with the expansion of the forecasting step; however, it reflects the actual price and fluctuation. These findings have implications in accelerating the global economic recovery and exploring AI in the energy market.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Crypto-Currency Price Prediction using Deep Learning
    Thombre, Supriya
    Devikar, Aarti
    Gangamwar, Vaishnav
    Majrikar, Pratik
    Patil, Tanmay
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (01): : 306 - 312
  • [32] A Comparative Study of Bitcoin Price Prediction Using Deep Learning
    Ji, Suhwan
    Kim, Jongmin
    Im, Hyeonseung
    MATHEMATICS, 2019, 7 (10)
  • [33] Stock price prediction using deep learning and frequency decomposition
    Rezaei, Hadi
    Faaljou, Hamidreza
    Mansourfar, Gholamreza
    Expert Systems with Applications, 2021, 169
  • [34] Stock price prediction using deep learning and frequency decomposition
    Rezaei, Hadi
    Faaljou, Hamidreza
    Mansourfar, Gholamreza
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169
  • [35] Ether Price Prediction Using Advanced Deep Learning Models
    Politis, Agis
    Doka, Katerina
    Koziris, Nectarios
    2021 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (ICBC), 2021,
  • [36] Cryptocurrency Price Prediction Using Frequency Decomposition and Deep Learning
    Jin, Chuantai
    Li, Yong
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [37] A Survey of Forex and Stock Price Prediction Using Deep Learning
    Hu, Zexin
    Zhao, Yiqi
    Khushi, Matloob
    APPLIED SYSTEM INNOVATION, 2021, 4 (01)
  • [38] Stock Price Prediction using Deep-Learning Model
    Pralcash, Tamil A.
    Sudha
    2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 533 - 538
  • [39] Short Term Stock Price Prediction Using Deep Learning
    Khare, Kaustubh
    Darekar, Omkar
    Gupta, Prafull
    Attar, V. Z.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 482 - 486
  • [40] Machine Learning WTI Crude Oil Price Predictions
    Jin, Bingzi
    Xu, Xiaojie
    JOURNAL OF INTERNATIONAL COMMERCE ECONOMICS AND POLICY, 2025, 16 (01)