Recognition of sunflower growth period based on deep learning from UAV remote sensing images

被引:8
|
作者
Song, Zhishuang [1 ,2 ,3 ]
Wang, Pengfei [1 ,2 ,3 ]
Zhang, Zhitao [4 ]
Yang, Shuqin [1 ,2 ,3 ]
Ning, Jifeng [2 ,3 ,5 ]
机构
[1] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Shaanxi, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Agr Internet Things, Yangling 712100, Shaanxi, Peoples R China
[3] Shaanxi Key Lab Agr Informat Percept & Intelligent, Yangling 712100, Shaanxi, Peoples R China
[4] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Yangling 712100, Shaanxi, Peoples R China
[5] Northwest A&F Univ, Coll Informat Engn, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Sunflower; Growth period recognition; Deep learning; UAV remote sensing image; TIME-SERIES; LEAF-AREA; YIELD; IRRIGATION; WHEAT; L;
D O I
10.1007/s11119-023-09996-6
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Accurate determination of crops growth period plays an important role in field management and agricultural decision-making. The current work mostly extracts the crop normalized difference vegetation index curve from multi-temporal data and identifies the crop phenology based on its trend or special nodes. However, these time-series-based identification methods are difficult to be applied to practically crop monitoring tasks. In this paper, the unmanned aerial vehicle remote sensing platform is used to collect the multi-spectral images of the experimental field and identify the sunflower growth period based on the different population features during its different growth periods. According to the actual field management needs, this study obtains the plot-level sunflower growth period result by analyzing statistically the distribution area of different sunflower periods in a field plot. This study uses the data of 2018 in the study area to build the model and test its performance on the data of 2019. Through comparative experiments, PSPNet can achieve a good balance between accuracy and efficiency in this study. Further, given to time-series relationship between the adjacent growth periods classification, this paper proposes an improved loss function to weight different types of misclassification to optimize model performance. The results show that improved PSPNet with proposed weighted loss function achieves the optimal recognition accuracy of 89.01%, which provides a solution for sunflower growth period recognition based on the single-phase data.
引用
收藏
页码:1417 / 1438
页数:22
相关论文
共 50 条
  • [41] Research on Recognition of Landslides with Remote Sensing Images Based on Extreme Learning Machine
    Xu, Hui
    Li, Xiang
    Gong, Wenyin
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 740 - 747
  • [42] BUILDING EXTRACTION FROM REMOTE SENSING IMAGES USING DEEP LEARNING AND TRANSFER LEARNING
    Prakash, P. S.
    Soni, Janhavi
    Bharath, H. A.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3079 - 3082
  • [43] Remote Sensing Images Recognition by Deep Convolutional Neural Networks
    Zhou, Tao
    Chen, Yuanyuan
    2018 3RD INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING (ICRAE), 2018, : 202 - 205
  • [44] DEEP LEARNING BASED UAV PAYLOAD RECOGNITION
    Sommer, Lars
    Spraul, Raphael
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [45] Survey of Road Extraction Methods in Remote Sensing Images Based on Deep Learning
    Liu, Pengfei
    Wang, Qing
    Yang, Gaochao
    Li, Lu
    Zhang, Huan
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2022, 90 (02): : 135 - 159
  • [46] Deep learning-based semantic segmentation of remote sensing images: a review
    Lv, Jinna
    Shen, Qi
    Lv, Mingzheng
    Li, Yiran
    Shi, Lei
    Zhang, Peiying
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [47] Survey of Road Extraction Methods in Remote Sensing Images Based on Deep Learning
    Pengfei Liu
    Qing Wang
    Gaochao Yang
    Lu Li
    Huan Zhang
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2022, 90 : 135 - 159
  • [48] Deep Learning-Based Change Detection in Remote Sensing Images: A Review
    Shafique, Ayesha
    Cao, Guo
    Khan, Zia
    Asad, Muhammad
    Aslam, Muhammad
    REMOTE SENSING, 2022, 14 (04)
  • [49] Road network extraction and vectorization of remote sensing images based on deep learning
    Gong, Zhe
    Xu, Li
    Tian, Zhenpo
    Bao, Jingyuan
    Ming, Delie
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 303 - 307
  • [50] Optimizing Deep Learning Models for Climate-Related Natural Disaster Detection from UAV Images and Remote Sensing Data
    Vanexel, Kim
    Sherchan, Samendra
    Liu, Siyan
    JOURNAL OF IMAGING, 2025, 11 (02)