Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems

被引:4
|
作者
Zhao, Wei [1 ,2 ,3 ]
Zhang, Shiqi [3 ]
Wang, Bei [3 ]
Zhou, Bing [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Artificial Intelligence & Comp Sci, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Cooperat Innovat Ctr Internet Healthcare, Zhengzhou, Peoples R China
[3] Zhengzhou Univ, Cooperat Innovat Ctr Internet Healthcare, Zhengzhou, Peoples R China
关键词
Traffic flow prediction; Intelligent transportation systems; Artificial intelligence; Graph convolution neural networks; Time series prediction;
D O I
10.7717/peerj-cs.1484
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurately predicting traffic flow on roads is crucial to address urban traffic congestion and save on travel time. However, this is a challenging task due to the strong spatial and temporal correlations of traffic data. Existing traffic flow prediction methods based on graph neural networks and recurrent neural networks often overlook the dynamic spatiotemporal dependencies between road nodes and excessively focus on the local spatiotemporal dependencies of traffic flow, thereby failing to effectively model global spatiotemporal dependencies. To overcome these challenges, this article proposes a new Spatio-temporal Causal Graph Attention Network (STCGAT). STCGAT utilizes a node embedding technique that enables the generation of spatial adjacency subgraphs on a per-time-step basis, without requiring any prior geographic information. This obviates the necessity for intricate modeling of constantly changing graph topologies. Additionally, STCGAT introduces a proficient causal temporal correlation module that encompasses node-adaptive learning, graph convolution, as well as local and global causal temporal convolution modules. This module effectively captures both local and global Spatio-temporal dependencies. The proposed STCGAT model is extensively evaluated on traffic datasets. The results show that it outperforms all baseline models consistently.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A mobility aware network traffic prediction model based on dynamic graph attention spatio-temporal network
    Jin, Zilong
    Qian, Jun
    Kong, Zhixiang
    Pan, Chengsheng
    COMPUTER NETWORKS, 2023, 235
  • [22] Adaptive spatio-temporal graph convolutional network with attention mechanism for mobile edge network traffic prediction
    Sha, Ning
    Wu, Xiaochun
    Wen, Jinpeng
    Li, Jinglei
    Li, Chuanhuang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 13257 - 13272
  • [23] A Spatio-Temporal Traffic Flow Prediction Method Based on Dynamic Graph Convolution Network
    Yang, Guoliang
    Yu, Huasheng
    Xi, Hao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5364 - 5369
  • [24] Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction
    Wang, Weitai
    Wang, Xiaoqiang
    Li, Leixiao
    Tao, Yihao
    Lin, Hao
    Computer Engineering and Applications, 2024, 60 (08) : 31 - 45
  • [25] STGFP: information enhanced spatio-temporal graph neural network for traffic flow prediction
    Li, Qi
    Wang, Fan
    Wang, Chen
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [26] Deep spatio-temporal neural network based on interactive attention for traffic flow prediction
    Hui Zeng
    Zhiying Peng
    XiaoHui Huang
    Yixue Yang
    Rong Hu
    Applied Intelligence, 2022, 52 : 10285 - 10296
  • [27] ST-GAT: A Spatio-Temporal Graph Attention Network for Accurate Traffic Speed Prediction
    Song, Junho
    Son, Jiwon
    Seo, Dong-hyuk
    Han, Kyungsik
    Kim, Namhyuk
    Kim, Sang-Wook
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4500 - 4504
  • [28] Research on traffic flow prediction based on adaptive spatio-temporal perceptual graph neural network for traffic prediction
    Liang, Qian
    Yin, Xiang
    Xia, Chengliang
    Chen, Ye
    ACM International Conference Proceeding Series, : 1101 - 1105
  • [29] Deep spatio-temporal neural network based on interactive attention for traffic flow prediction
    Zeng, Hui
    Peng, Zhiying
    Huang, XiaoHui
    Yang, Yixue
    Hu, Rong
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10285 - 10296
  • [30] Traffic Network Socialization: An Adaptive Spatio-Temporal Graph Convolutional Network for Traffic Prediction
    Wang, Rong
    Li, Miaofei
    Zhao, Jiankuan
    Cheng, Anyu
    Jia, Chaolong
    IEEE Transactions on Emerging Topics in Computing, 2024,