Mpropred: A machine learning (ML) driven Web-App for bioactivity prediction of SARS-CoV-2 main protease (Mpro) antagonists

被引:4
|
作者
Ferdous, Nadim [1 ]
Reza, Mahjerin Nasrin [1 ]
Hossain, Mohammad Uzzal [2 ,3 ]
Mahmud, Shahin [1 ]
Napis, Suhami [4 ]
Chowdhury, Kamal [5 ]
Mohiuddin, A. K. M. [1 ]
机构
[1] Mawlana Bhashani Sci & Technol Univ, Dept Biotechnol & Genet Engn, Santosh, Tangail, Bangladesh
[2] Univ Oxford, Dept Pharmacol, Med Sci Div, Oxford, England
[3] Natl Inst Biotechnol, Bioinformat Div, Dhaka, Bangladesh
[4] Univ Putra Malaysia, Dept Mol Biol, Serdang, Selangor De, Malaysia
[5] Claflin Univ, Biol Dept, Orangeburg, SC USA
来源
PLOS ONE | 2023年 / 18卷 / 06期
关键词
COMPUTATIONAL METHODS; ANTIGENIC DRIFT; QSAR; DEFINITION; INHIBITION; EMERGENCE; COVID-19; DOCKING; TOOL;
D O I
10.1371/journal.pone.0287179
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged in 2019 and still requiring treatments with fast clinical translatability. Frequent occurrence of mutations in spike glycoprotein of SARS-CoV-2 led the consideration of an alternative therapeutic target to combat the ongoing pandemic. The main protease (M-pro) is such an attractive drug target due to its importance in maturating several polyproteins during the replication process. In the present study, we used a classification structure-activity relationship (CSAR) model to find substructures that leads to to anti-M-pro activities among 758 non-redundant compounds. A set of 12 fingerprints were used to describe M-pro inhibitors, and the random forest approach was used to build prediction models from 100 distinct data splits. The data set's modelability (MODI index) was found to be robust, with a value of 0.79 above the 0.65 threshold. The accuracy (89%), sensitivity (89%), specificity (73%), and Matthews correlation coefficient (79%) used to calculate the prediction performance, was also found to be statistically robust. An extensive analysis of the top significant descriptors unveiled the significance of methyl side chains, aromatic ring and halogen groups for M-pro inhibition. Finally, the predictive model is made publicly accessible as a web-app named M(pro)pred in order to allow users to predict the bioactivity of compounds against SARS-CoV-2 M-pro. Later, CMNPD, a marine compound database was screened by our app to predict bioactivity of all the compounds and results revealed significant correlation with their binding affinity to M-pro. Molecular dynamics (MD) simulation and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) analysis showed improved properties of the complexes. Thus, the knowledge and web-app shown herein can be used to develop more effective and specific inhibitors against the SARS-CoV-2 M-pro. The web-app can be accessed from https://share.streamlit.io/nadimfrds/mpropred/Mpropred_app.py.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Primer for Designing Main Protease (Mpro) Inhibitors of SARS-CoV-2
    Thakur, Abhishek
    Sharma, Gaurav
    Badavath, Vishnu Nayak
    Jayaprakash, Venkatesan
    Merz, Kenneth M., Jr.
    Blum, Galia
    Acevedo, Orlando
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (25): : 5776 - 5786
  • [2] Targeting allosteric pockets of SARS-CoV-2 main protease Mpro
    Bhat, Zahoor Ahmad
    Chitara, Dheeraj
    Iqbal, Jawed
    Sanjeev, B. S.
    Madhumalar, Arumugam
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (14): : 6603 - 6618
  • [3] Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro)
    Soumya Gulab Katre
    Alpana Jagdish Asnani
    Kumar Pratyush
    Nilima Gangadhar Sakharkar
    Ashwini Gajanan Bhope
    Kanchan Tekram Sawarkar
    Vaibhav Santosh Nimbekar
    Future Journal of Pharmaceutical Sciences, 8
  • [4] IN SILICO PREDICTION OF INHIBITORY POTENTIAL OF A PUNICALAGIN ß-ANOMER AGAINST SARS-COV-2 MAIN PROTEASE (MPRO)
    Monteiro, Norberto
    Monteiro, Vitoria
    Lima, Lorena
    Karolline, Anna
    Machado, Richele
    QUIMICA NOVA, 2022, 45 (10): : 1230 - 1235
  • [5] Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (Mpro)
    Yang, Yue
    Luo, Yi-Dan
    Zhang, Chen-Bo
    Xiang, Yang
    Bai, Xin-Yue
    Zhang, Die
    Fu, Zhao-Ying
    Hao, Ruo-Bing
    Liu, Xiao-Long
    ACS OMEGA, 2024, 9 (32): : 34196 - 34219
  • [6] Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro)
    Katre, Soumya Gulab
    Asnani, Alpana Jagdish
    Pratyush, Kumar
    Sakharkar, Nilima Gangadhar
    Bhope, Ashwini Gajanan
    Sawarkar, Kanchan Tekram
    Nimbekar, Vaibhav Santosh
    FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES, 2022, 8 (01)
  • [7] Statine-based peptidomimetic compounds as inhibitors for SARS-CoV-2 main protease (SARS-CoV-2 Mpro)
    Azevedo, Pedro Henrique R. de A.
    Camargo, Priscila G.
    Constant, Larissa E. C.
    Costa, Stephany da S.
    Silva, Celimar Sinezia
    Rosa, Alice S.
    Souza, Daniel D. C.
    Tucci, Amanda R.
    Ferreira, Vivian N. S.
    Oliveira, Thamara Kelcya F.
    Borba, Nathalia R. R.
    Rodrigues, Carlos R.
    Albuquerque, Magaly G.
    Dias, Luiza R. S.
    Garrett, Rafael
    Miranda, Milene D.
    Allonso, Diego
    Lima, Camilo Henrique da S.
    Muri, Estela Maris F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Computational analysis of substrate recognition of Sars-Cov-2 Mpro main protease
    Tasci, Hilal Sena
    Akkus, Ebru
    Yildiz, Muslum
    Kocak, Abdulkadir
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 107
  • [9] In Silico Identification of Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro)
    Hernandez-Serda, Manuel Alejandro
    Vazquez-Valadez, Victor H.
    Aguirre-Vidal, Pablo
    Markarian, Nathan M.
    Medina-Franco, Jose L.
    Cardenas-Granados, Luis Alfonso
    Alarcon-Lopez, Aldo Yoshio
    Martinez-Soriano, Pablo A.
    Velazquez-Sanchez, Ana Maria
    Falfan-Valencia, Rodolfo E.
    Angeles, Enrique
    Abrahamyan, Levon
    PATHOGENS, 2024, 13 (10):
  • [10] The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (Mpro)
    Ebrahim, Ali
    Riley, Blake T.
    Kumaran, Desigan
    Andi, Babak
    Fuchs, Martin R.
    McSweeney, Sean
    Keedy, Daniel A.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C614 - C614