On Bayesian predictive density estimation for skew-normal distributions

被引:0
|
作者
Kortbi, Othmane [1 ]
机构
[1] UAE Univ, Dept Stat & Business Analyt, Al Ain, U Arab Emirates
关键词
Skew-normal distributions; Predictive densities; Minimax estimators; Admissibility; Kullback-Leibler loss; Bayes estimators;
D O I
10.1007/s00184-024-00946-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with prediction for skew-normal models, and more specifically the Bayes estimation of a predictive density for Y mu similar to SNp(mu,vyIp,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y \left. \right| \mu \sim {\mathcal {S}} {\mathcal {N}}_p (\mu , v_y I_p, \lambda )$$\end{document} under Kullback-Leibler loss, based on X mu similar to SNp(mu,vxIp,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \left. \right| \mu \sim {\mathcal {S}} {\mathcal {N}}_p (\mu , v_x I_p, \lambda )$$\end{document} with known dependence and skewness parameters. We obtain representations for Bayes predictive densities, including the minimum risk equivariant predictive density p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} which is a Bayes predictive density with respect to the noninformative prior pi 0 equivalent to 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _0\equiv 1$$\end{document}. George et al. (Ann Stat 34:78-91, 2006) used the parallel between the problem of point estimation and the problem of estimation of predictive densities to establish a connection between the difference of risks of the two problems. The development of similar connection, allows us to determine sufficient conditions of dominance over p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} and of minimaxity. First, we show that p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} is a minimax predictive density under KL risk for the skew-normal model. After this, for dimensions p >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 3$$\end{document}, we obtain classes of Bayesian minimax densities that improve p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} under KL loss, for the subclass of skew-normal distributions with small value of skewness parameter. Moreover, for dimensions p >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 4$$\end{document}, we obtain classes of Bayesian minimax densities that improve p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} under KL loss, for the whole class of skew-normal distributions. Examples of proper priors, including generalized student priors, generating Bayesian minimax densities that improve p<^>pi o\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{p}_{\pi _{o}}$$\end{document} under KL loss, were constructed when p >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 5$$\end{document}. This findings represent an extension of Liang and Barron (IEEE Trans Inf Theory 50(11):2708-2726, 2004), George et al. (Ann Stat 34:78-91, 2006) and Komaki (Biometrika 88(3):859-864, 2001) results to a subclass of asymmetrical distributions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Bayesian analysis of censored linear regression models with scale mixtures of skew-normal distributions
    Massuia, Monique B.
    Garay, Aldo M.
    Cabral, Celso R. B.
    Lachos, V. H.
    STATISTICS AND ITS INTERFACE, 2017, 10 (03) : 425 - 439
  • [22] Multivariate extremes of generalized skew-normal distributions
    Lysenko, Natalia
    Roy, Parthanil
    Waeber, Rolf
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (04) : 525 - 533
  • [23] Robust linear mixed models with skew-normal independent distributions from a Bayesian perspective
    Lachos, Victor H.
    Dey, Dipak K.
    Cancho, Vicente G.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (12) : 4098 - 4110
  • [24] A Generalization of the Skew-Normal Distribution: The Beta Skew-Normal
    Mameli, Valentina
    Musio, Monica
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (12) : 2229 - 2244
  • [25] On bias reduction estimators of skew-normal and skew-t distributions
    Maghami, Mohammad Mahdi
    Bahrami, Mohammad
    Sajadi, Farkhondeh Alsadat
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (16) : 3030 - 3052
  • [26] On the identifiability of finite mixture of Skew-Normal and Skew-t distributions
    Otiniano, C. E. G.
    Rathie, P. N.
    Ozelim, L. C. S. M.
    STATISTICS & PROBABILITY LETTERS, 2015, 106 : 103 - 108
  • [27] THE LOGARITHMIC SKEW-NORMAL DISTRIBUTIONS ARE MOMENT-INDETERMINATE
    Lin, Gwo Dong
    Stoyanov, Jordan
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (03) : 909 - 916
  • [28] Scale and shape mixtures of multivariate skew-normal distributions
    Arellano-Valle, Reinaldo B.
    Ferreira, Clecio S.
    Genton, Marc G.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 98 - 110
  • [29] On the non-identifiability of unified skew-normal distributions
    Wang, Kesen
    Arellano-Valle, Reinaldo B.
    Azzalini, Adelchi
    Genton, Marc G.
    STAT, 2023, 12 (01):
  • [30] Statistical compact model extraction for skew-normal distributions
    Revanth, Koduru
    Janakiraman, Viraraghavan
    IET CIRCUITS DEVICES & SYSTEMS, 2020, 14 (05) : 576 - 585