Data-driven classification of the chemical composition of calcine in a ferronickel furnace oven using machine learning techniques

被引:3
|
作者
Cardenas, Diego A. Velandia [1 ]
Leon-Medina, Jersson X. [2 ,3 ]
Pulgarin, Erwin Jose Lopez [4 ]
Sofrony, Jorge Ivan [2 ]
机构
[1] Univ Nacl Colombia, Dept Elect & Elect Engn, Bogota, Colombia
[2] Univ Nacl Colombia, Dept Mech & Mechatron Engn, Bogota, Colombia
[3] Univ Politecn Catalunya UPC, Dept Math, Control Data & Artificial Intelligence CoDAlab, Escola Engn Barcelona Est EEBE, Barcelona, Spain
[4] Univ Manchester, Dept Elect & Elect Engn EEE, Manchester, England
关键词
Clustering; Factorial multivariate analysis; FactoClass; Furnace monitoring; k-means clustering; Search-grid; XGBoost;
D O I
10.1016/j.rineng.2023.101028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Calcines' chemical composition analysis is a key process in ferronickel smelting. These values allow for a clear understanding of the smelted product's expected quality, catering for any required chemical upgrading of the raw material or modification in the furnace's set-point if the calcine has undesired characteristics. Offline tests for calcines' chemical composition can take several days, potentially delaying the whole operation. A data-driven approach to chemical composition classification using on-line data is proposed by combining clustering classification through a mixed Principal Component Analysis (PCA) model, data processing and standardization process, with a Machine Learning classification algorithm, i.e. Extreme Gradient Boosting (XGBoost). This allows for an online prediction of calcines' chemical composition based on the furnace's current operating conditions. The proposed method's accuracy scored mean values between 82.1% and 85.9%, which is encouraging in comparison with other proposed methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Data-driven explainable machine learning for personalized risk classification of myasthenic crisis
    Bershan, Sivan
    Meisel, Andreas
    Mergenthaler, Philipp
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 194
  • [22] Failure mode identification of column base plate connection using data-driven machine learning techniques
    Kabir, Md. Asif Bin
    Hasan, Ahmed Sajid
    Billah, A. H. M. Muntasir
    ENGINEERING STRUCTURES, 2021, 240
  • [23] Image-based Object Classification of Defects in Steel using Data-driven Machine Learning Optimization
    Buerger, Fabian
    Buck, Christoph
    Pauli, Josef
    Luther, Wolfram
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 143 - 152
  • [24] CLASSIFICATION OF RAIL SWITCH DATA USING MACHINE LEARNING TECHNIQUES
    Bryan, Kaylen J.
    Solomon, Mitchell
    Jensen, Emily
    Coley, Christina
    Rajan, Kailas
    Tian, Charlie
    Mijatovic, Nenad
    Kiss, James M.
    Lamoureux, Benjamin
    Dersin, Pierre
    Smith, Anthony O.
    Peter, Adrian M.
    PROCEEDINGS OF THE ASME JOINT RAIL CONFERENCE, 2018, 2018,
  • [25] Using machine learning techniques for exploration and classification of laboratory data
    Trulson, Inga
    Holdenrieder, Stefan
    Hoffmann, Georg
    JOURNAL OF LABORATORY MEDICINE, 2024, 48 (05) : 203 - 214
  • [26] Classification of rocks radionuclide data using machine learning techniques
    Khan, Abdul Razzaq
    Mir, Adil Aslam
    Saeed, Sharjil
    Rafique, Muhammad
    Asim, Khawaja M.
    Iqbal, Talat
    Jabbar, Abdul
    Rahman, Saeed Ur
    ACTA GEOPHYSICA, 2018, 66 (05) : 1073 - 1079
  • [27] Classification of rocks radionuclide data using machine learning techniques
    Abdul Razzaq Khan
    Adil Aslam Mir
    Sharjil Saeed
    Muhammad Rafique
    Khawaja M. Asim
    Talat Iqbal
    Abdul Jabbar
    Saeed Ur Rahman
    Acta Geophysica, 2018, 66 : 1073 - 1079
  • [28] Classification of Diabetic Patient Data Using Machine Learning Techniques
    Singh, Pankaj Pratap
    Prasad, Shitala
    Das, Bhaskarjyoti
    Poddar, Upasana
    Choudhury, Dibarun Roy
    AMBIENT COMMUNICATIONS AND COMPUTER SYSTEMS, RACCCS 2017, 2018, 696 : 427 - 436
  • [29] Prediction of Thermogravimetric Data in the Thermal Recycling of e-waste Using Machine Learning Techniques: A Data-driven Approach
    Ali, Labeeb
    Sivaramakrishnan, Kaushik
    Kuttiyathil, Mohamed Shafi
    Chandrasekaran, Vignesh
    Ahmed, Oday H.
    Al-Harahsheh, Mohammad
    Altarawneh, Mohammednoor
    ACS OMEGA, 2023, 8 (45): : 43254 - 43270
  • [30] Data-driven decarbonization framework with machine learning
    Jain, Ayush
    Padmanaban, Manikandan
    Hazra, Jagabondhu
    Guruprasad, Ranjini
    Godbole, Shantanu
    Syam, Heriansyah
    ENVIRONMENTAL DATA SCIENCE, 2024, 3