Fire Risk Prediction Analysis Using Machine Learning Techniques

被引:2
|
作者
Seo, Min Song [1 ]
Castillo-Osorio, Ever Enrique [2 ]
Yoo, Hwan Hee [1 ]
机构
[1] Gyeongsang Natl Univ, Dept Urban Engn, 501 Jinju Daero, Jinju 660701, Gyeongsangnam D, South Korea
[2] Yonsei Univ, Sch Civil & Environm Engn, 50 Yonsei Ro, Seoul 03722, South Korea
关键词
fire property damage; support vector machine; random forest; gradient-boosted regression tree; k-fold cross-validation;
D O I
10.18494/SAM4252
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The damage caused by fire accidents is increasing worldwide. In particular, when a fire occurs, property damage directly affects the lives of citizens. Therefore, in this study, machine learning techniques were applied to analyze the prediction of the future amount of property damage from fire as well as the fire occurrence factors within a geographic area. To achieve this, three years of spatially distributed fire big data for Seoul, the capital of Korea, was used. For the predictive analysis of the amount of fire property damage, the results of analysis by applying machine learning techniques through k-fold cross-validation were calculated. As part of these results, when predicting and analyzing the amount of fire property damage using the random forest (RF) algorithm, an accuracy of 83% was calculated by comparing the predicted data with the actual data. On this basis, the importance of the fire risk factors was analyzed, and it was found that the main factor in the occurrence of fires is the condition of the facilities inside apartment houses. The findings of this study are expected to be used as an important guide for identifying property damage by fire and the factors determining the occurrence of fires in Korea, enabling the evaluation of their spatial distribution and the application of corrective measures to reduce possible damage by urban fires.
引用
收藏
页码:3241 / 3255
页数:15
相关论文
共 50 条
  • [31] Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques
    Xie, Zidian
    Nikolayeva, Olga
    Luo, Jiebo
    Li, Dongmei
    PREVENTING CHRONIC DISEASE, 2019, 16
  • [32] Building risk prediction models for daily use of marijuana using machine learning techniques
    Parekh, Tarang
    Fahim, Farhan
    DRUG AND ALCOHOL DEPENDENCE, 2021, 225
  • [33] Analysis of Tree-Family Machine Learning Techniques for Risk Prediction in Software Requirements
    Khan, Bilal
    Naseem, Rashid
    Alam, Iftikhar
    Khan, Inayat
    Alasmary, Hisham
    Rahman, Taj
    IEEE ACCESS, 2022, 10 : 98220 - 98231
  • [34] Stock Market Prediction Using Machine Learning Techniques
    Usmani, Mehak
    Adil, Syed Hasan
    Raza, Kaman
    Ali, Syed Saad Azhar
    2016 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2016, : 322 - 327
  • [35] STOCK PRICE PREDICTION USING MACHINE LEARNING TECHNIQUES
    Sarode, Sumeet
    Tolani, Harsha G.
    Kak, Prateek
    Lifna, C. S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2019), 2019, : 177 - 181
  • [36] Cybercrime: Identification and Prediction Using Machine Learning Techniques
    Veena, K.
    Meena, K.
    Kuppusamy, Ramya
    Teekaraman, Yuvaraja
    Angadi, Ravi V.
    Thelkar, Amruth Ramesh
    Computational Intelligence and Neuroscience, 2022, 2022
  • [37] Heart Disease Prediction using Machine Learning Techniques
    Shah D.
    Patel S.
    Bharti S.K.
    SN Computer Science, 2020, 1 (6)
  • [38] Personal bankruptcy prediction using machine learning techniques
    Brygala, Magdalena
    Korol, Tomasz
    ECONOMICS AND BUSINESS REVIEW, 2024, 10 (02) : 118 - 142
  • [39] Intelligent Sales Prediction Using Machine Learning Techniques
    Cheriyan, Sunitha
    Ibrahim, Shaniba
    Mohanan, Saju
    Treesa, Susan
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRONICS & COMMUNICATIONS ENGINEERING (ICCECE), 2018, : 53 - 58
  • [40] Software reliability prediction using machine learning techniques
    Jaiswal A.
    Malhotra R.
    International Journal of System Assurance Engineering and Management, 2018, 9 (1) : 230 - 244