Plasmonic Nanostructure Biosensors: A Review

被引:15
|
作者
Wang, Huimin [1 ,2 ]
Wang, Tao [1 ,2 ]
Yuan, Xuyang [1 ,2 ]
Wang, Yuandong [1 ,2 ]
Yue, Xinzhao [1 ,2 ]
Wang, Lu [1 ,2 ]
Zhang, Jinyan [1 ,2 ]
Wang, Jian [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Opt Valley Lab, Wuhan 430074, Peoples R China
关键词
plasmonic nanostructure biosensors; surface plasmon resonance; plasmon nanoruler; surface-enhanced Raman scattering; ENHANCED RAMAN-SPECTROSCOPY; PROPAGATING SURFACE-PLASMONS; GOLD NANOPARTICLES; RESONANCE BIOSENSOR; SENSITIVITY-ENHANCEMENT; ULTRASENSITIVE DETECTION; COLORIMETRIC DETECTION; MOLECULAR RULER; SINGLE GOLD; SENSORS;
D O I
10.3390/s23198156
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Plasmonic nanostructure biosensors based on metal are a powerful tool in the biosensing field. Surface plasmon resonance (SPR) can be classified into localized surface plasmon resonance (LSPR) and propagating surface plasmon polariton (PSPP), based on the transmission mode. Initially, the physical principles of LSPR and PSPP are elaborated. In what follows, the recent development of the biosensors related to SPR principle is summarized. For clarity, they are categorized into three groups according to the sensing principle: (i) inherent resonance-based biosensors, which are sensitive to the refractive index changes of the surroundings; (ii) plasmon nanoruler biosensors in which the distances of the nanostructure can be changed by biomolecules at the nanoscale; and (iii) surface-enhanced Raman scattering biosensors in which the nanostructure serves as an amplifier for Raman scattering signals. Moreover, the advanced application of single-molecule detection is discussed in terms of metal nanoparticle and nanopore structures. The review concludes by providing perspectives on the future development of plasmonic nanostructure biosensors.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Plasmonic Nanostructure Engineering with Shadow Growth
    Han, Jang-Hwan
    Kim, Doeun
    Kim, Juhwan
    Kim, Gyurin
    Fischer, Peer
    Jeong, Hyeon-Ho
    ADVANCED MATERIALS, 2023, 35 (34)
  • [42] Optical forces near a plasmonic nanostructure
    Yannopapas, Vassilios
    PHYSICAL REVIEW B, 2008, 78 (04)
  • [43] Heat Superdiffusion in Plasmonic Nanostructure Networks
    Ben-Abdallah, Philippe
    Messina, Riccardo
    Biehs, Svend-Age
    Tschikin, Maria
    Joulain, Karl
    Henkel, Carsten
    PHYSICAL REVIEW LETTERS, 2013, 111 (17)
  • [44] Photofabrication of Chiral Plasmonic Nanostructure Arrays
    Homma, Toru
    Sawada, Naoki
    Ishida, Takuya
    Tatsuma, Tetsu
    CHEMNANOMAT, 2023, 9 (07)
  • [45] Development and Current Trends in Manufacture of Nanostructure Biosensors
    Bertok, Tomas
    Sefcovicova, Jana
    Gemeiner, Peter
    Tkac, Jan
    CHEMICKE LISTY, 2012, 106 (03): : 174 - 181
  • [46] The development of nanostructure assisted isothermal amplification in biosensors
    Duan, Ruixue
    Lou, Xiaoding
    Xia, Fan
    CHEMICAL SOCIETY REVIEWS, 2016, 45 (06) : 1738 - 1749
  • [47] Recent Progresses in Plasmonic Biosensors for Point-of-Care (POC) Devices: A Critical Review
    Serafinelli, Caterina
    Fantoni, Alessandro
    Alegria, Elisabete C. B. A.
    Vieira, Manuela
    CHEMOSENSORS, 2023, 11 (05)
  • [48] Detection of Kidney Complications Relevant Concentrations of Ammonia Gas Using Plasmonic Biosensors: A Review
    Usman, Fahad
    Ghazali, Kamarul Hawari
    Muda, Razali
    Dennis, John Ojur
    Ibnaouf, Khalid Hassan
    Aldaghri, Osamah A.
    Alsadig, Ahmed
    Johari, Nasrul Hadi
    Jose, Rajan
    CHEMOSENSORS, 2023, 11 (02)
  • [49] A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors
    Sahin, Samet
    Caglayan, Mustafa Oguzhan
    Ustundag, Zafer
    TALANTA, 2020, 220
  • [50] Dual Polarization Measurements in the Hybrid Plasmonic Biosensors
    Bahrami, F.
    Alam, M. Z.
    Aitchison, J. S.
    Mojahedi, M.
    PLASMONICS, 2013, 8 (02) : 465 - 473