Theoretical Study on the Electronic Structure of Polymer-in-Salt/Ionic Liquid-Based Biodegradable Gel Polymer Electrolyte

被引:0
|
作者
Arya, Ramesh Kumar [1 ]
Gupta, Abhishek Kumar [1 ,2 ]
机构
[1] Madan Mohan Malaviya Univ Technol, Dept Phys & Mat Sci, Nano & Energy Storage Lab NanoESL, Gorakhpur, India
[2] Harcourt Butler Tech Univ, Dept Phys, Kanpur 208002, UP, India
关键词
Polycaprolactone; Solid polymer electrolyte; Ionogel; B3LYP method; Electron transfer parameter; DENSITY-FUNCTIONAL THEORY; ELECTROCHEMICAL STABILITY WINDOW; IONIC LIQUIDS; TRANSPORT;
D O I
10.1007/s13538-024-01424-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometry, electronic structure, and chemical reactivity of polycaprolactone (PCL), solid polymer electrolyte (SPE; PCL/LiTFSI), and polymer-in-salt/ionic liquid-based biodegradable gel polymer electrolyte, i.e., ionogel (IG; PCL/LiTFSI/[EMIMDCA]) have been discussed on the basis of quantum chemical density functional theory (DFT) calculations using B3LYP method and LANL2DZ basis set. The interaction of Li+-ion with PCL and ionic liquid (IL) has been calculated in terms of electronic structures of clusters of the mixtures of PCL and IL including a Li+-ion. The energy values of - 6.76, - 7.02, and - 5.29 eV and - 1.11, - 3.60, and - 3.35 eV were related to HOMO-LUMO orbitals of PCL, SPE, and IG, respectively. The energy gap (Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{\text{g}}}$$\end{document}) of the molecular systems are found 5.65 (PCL), 3.41 (SPE), and 1.95 eV (IG), respectively. The migration of the LiTFSI (Li+-ion) cation is what causes the lowered band gap (Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{\text{g}}}$$\end{document}) of SPE. Finally, the narrowed Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{\text{g}}}$$\end{document} of IG demonstrates that IL improves the migration of the LiTFSI cation (Li+-ion) across the PCL oxygen atom. The HOMO-LUMO energy levels are used to calculate the global and local chemical descriptors and electrochemical stability windows (ESWs). Mulliken population analysis (MPA) and the surface of the molecular electrostatic potential (MEP) are used to study partial charge analysis.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Characterization of ionic liquid contained polymer gel electrolyte
    Ryu, Sang-Woog
    Song, Eul-Hwan
    POLYMER-KOREA, 2008, 32 (01) : 85 - 89
  • [22] Study on ionic liquid-based gel polymer electrolytes for dual-graphite battery systems
    Zeng, Yong
    Wang, Keliang
    Ke, Xiang
    Tan, Xiaoqing
    Jiang, Bo
    Zhu, Weichen
    Xiao, Rengui
    IONICS, 2023, 29 (04) : 1381 - 1393
  • [23] Study on ionic liquid-based gel polymer electrolytes for dual-graphite battery systems
    Yong Zeng
    Keliang Wang
    Xiang Ke
    Xiaoqing Tan
    Bo Jiang
    Weichen Zhu
    Rengui Xiao
    Ionics, 2023, 29 : 1381 - 1393
  • [24] Influence of ionic interactions on lithium diffusion properties in ionic liquid-based gel polymer electrolytes
    Porthault, H.
    Piana, G.
    Duffault, J. M.
    Franger, S.
    ELECTROCHIMICA ACTA, 2020, 354
  • [25] Study of [EMIM] [EtSO4] ionic liquid-based gel polymer electrolyte mediated with hydroquinone redox additive for flexible supercapacitors
    Rao, Ankitha
    Bhat, Somashekara
    De, Shounak
    Cyriac, Vipin
    Rag, S. Adarsh
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [26] A Self-Healing Ionic Liquid-Based Ionically Cross-Linked Gel Polymer Electrolyte for Electrochromic Devices
    Chen, Wanyu
    Liu, Siyuan
    Guo, Le
    Zhang, Guixia
    Zhang, Heng
    Cao, Meng
    Wu, Lili
    Xiang, Tianxing
    Peng, Yong
    POLYMERS, 2021, 13 (05) : 1 - 11
  • [27] Physical and electrochemical chattels of phosphonium ionic liquid-based solid and gel-polymer electrolyte for lithium secondary batteries
    Muthupradeepa, R.
    Sivakumar, M.
    Subadevi, R.
    Suriyanarayanan, V.
    Ramachandran, M.
    Rajkumar, P.
    Yuvakkumar, R.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (24) : 22933 - 22944
  • [28] Physical and electrochemical chattels of phosphonium ionic liquid-based solid and gel-polymer electrolyte for lithium secondary batteries
    R. Muthupradeepa
    M. Sivakumar
    R. Subadevi
    V. Suriyanarayanan
    M. Ramachandran
    P. Rajkumar
    R. Yuvakkumar
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 22933 - 22944
  • [29] Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery
    Mishra, Kuldeep
    Hashmi, S. A.
    Rai, D. K.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (08) : 2255 - 2266
  • [30] Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery
    Kuldeep Mishra
    S. A. Hashmi
    D. K. Rai
    Journal of Solid State Electrochemistry, 2014, 18 : 2255 - 2266