Applying periodic and anti-periodic boundary conditions in existence results of fractional differential equations via nonlinear contractive mappings

被引:4
|
作者
Panda, Sumati Kumari [1 ]
Vijayakumar, Velusamy [2 ]
Nisar, Kottakkaran Sooppy [3 ]
机构
[1] GMR Inst Technol, Dept Math, Rajam 532127, Andhra Pradesh, India
[2] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al kharj, Dept Math, Al Kharj 11942, Saudi Arabia
关键词
Nonlinear cyclic orbital (?-F)-contraction; Fractional differential equations; Fractional delay differential equations; Green function; Periodic/anti-periodic boundary conditions; Fixed point; POINT THEOREMS; METRIC-SPACES;
D O I
10.1186/s13661-023-01778-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a notion of nonlinear cyclic orbital (. - F)-contraction and prove related results. With these results, we address the existence and uniqueness results with periodic/anti-periodic boundary conditions for: 1. The nonlinear multi-order fractional differential equation L(D).(.) = s(.,.(.)),.. J = [0, A], A > 0, where L(D) =.w cDdw +.w- 1 cDdw- 1 + center dot center dot center dot +.1 cDd1 +.0 cDd0,. . R ( = 0, 1, 2, 3,..., w),.w = 0, 0 = d0 < d1 < d2 < center dot center dot center dot < dw- 1 < dw < 1; 2. The nonlinear multi-term fractional delay differential equation L(D).(.) = s(.,.(.),.(. - t)),.. J = [0, A], A > 0;.(.) = <overline> s (.),.. [-t, 0], where L(D) =.w cDdw +.w- 1 cDdw- 1 + center dot center dot center dot +.1 cDd1 +.0 cDd0,. . R ( = 0, 1, 2, 3,..., w),.w = 0, 0 = d0 < d1 < d2 < center dot center dot center dot < dw- 1 < dw < 1;
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order
    Fang Wang
    Zhenhai Liu
    Advances in Difference Equations, 2012
  • [22] Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order
    Wang, Fang
    Liu, Zhenhai
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [23] Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order
    Wang X.
    Guo X.
    Tang G.
    Journal of Applied Mathematics and Computing, 2013, 41 (1-2) : 367 - 375
  • [24] Anti-Periodic Boundary Value Problems for Nonlinear Langevin Fractional Differential Equations
    Li, Fang
    Zeng, Hongjuan
    Wang, Huiwen
    SYMMETRY-BASEL, 2019, 11 (04):
  • [25] Fractional Differential Equations with Nonlocal (Parametric Type) Anti-Periodic Boundary Conditions
    Agarwal, Ravi P.
    Ahmad, Bashir
    Nieto, Juan J.
    FILOMAT, 2017, 31 (05) : 1207 - 1214
  • [26] FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH DUAL ANTI-PERIODIC BOUNDARY CONDITIONS
    Ahmad, Bashir
    Alruwaily, Ymnah
    Alsaedi, Ahmed
    Nieto, Juan J.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2020, 33 (3-4) : 181 - 206
  • [27] On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions
    Heris, M. Saedshoar
    Javidi, M.
    APPLIED NUMERICAL MATHEMATICS, 2017, 118 : 203 - 220
  • [28] Fractional-order differential equations with anti-periodic boundary conditions: a survey
    Ravi P Agarwal
    Bashir Ahmad
    Ahmed Alsaedi
    Boundary Value Problems, 2017
  • [29] Existence results for a coupled system of nonlinear multi-term fractional differential equations with anti-periodic type coupled nonlocal boundary conditions
    Ahmad, Bashir
    Alblewi, Manal
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8739 - 8758
  • [30] Fractional-order differential equations with anti-periodic boundary conditions: a survey
    Agarwal, Ravi P.
    Ahmad, Bashir
    Alsaedi, Ahmed
    BOUNDARY VALUE PROBLEMS, 2017,