EABOA: Enhanced adaptive butterfly optimization algorithm for numerical optimization and engineering design problems

被引:8
|
作者
He, Kai [1 ]
Zhang, Yong [1 ]
Wang, Yu-Kun [1 ]
Zhou, Rong-He [1 ]
Zhang, Hong-Zhi [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan 114051, Peoples R China
关键词
Butterfly optimization algorithm; Adaptive fragrance; Levy flight; Dimension learning-based hunting; Numerical optimization; Engineering design problems; COMPUTATIONAL INTELLIGENCE; GENETIC ALGORITHM; CHAOTIC SEQUENCES; EVOLUTIONARY; PERFORMANCE; INTEGER; SEARCH; TESTS;
D O I
10.1016/j.aej.2023.12.050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The butterfly optimization algorithm (BOA) is a meta -heuristic algorithm that mimics foraging and mating behavior of butterflies. In order to alleviate the problems of slow convergence, local optimum and lack of population diversity of BOA, an enhanced adaptive butterfly optimization algorithm (EABOA) is proposed in this paper. First, a new adaptive fragrance model is designed, which provided a finer fragrance perception way and effectively enhanced the convergence speed and accuracy. Second, Levy flight with high -frequency short -step jumping and low -frequency long -step walking is adopted to help the algorithm jump out of the local optimum. Third, the dimension learning -based hunting is employed to enhance information exchange by creating neighbors for each butterfly, thus improving the balance between local and global search and maintaining population diversity. In addition, the Fitness -Distance -Constraint (FDC) method is introduced to enhance constraint handling in EABOA (named FDC-EABOA). The proposed EABOA is compared with 8 well-known algorithms and 8 BOA variants in CEC 2022 test suite and the results were statistically analyzed using Friedman, Friedman aligned rank, Wilcoxon signed rank, Quade rank and multiple comparisons, analysis of variance (ANOVA) and range analysis. Finally, EABOA and FDC-EABOA are applied to seven engineering problems (parameter identification of photovoltaic module model, speed reducer design, tension/compression spring design, pressure vessel design, gear train design, welded beam design, SOPWM for 3 -level inverters), and metrics such as Improvement Index (IF) and Mean Constraint Violation (MV) confirm that the proposed algorithms are satisfactory. Experimental results and statistical analysis show that the proposed algorithms outperform the comparison algorithms and demonstrate the strong potential for solving numerical optimization and engineering design problems.
引用
收藏
页码:543 / 573
页数:31
相关论文
共 50 条
  • [31] Design Optimization of Structural Engineering Problems Using Adaptive Cuckoo Search Algorithm
    Pauline, Ong
    Sin, Ho Choon
    Sheng, Desmond Daniel Chin Vui
    Kiong, Sia Chee
    Meng, Ong Kok
    2017 3RD INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2017, : 745 - 748
  • [32] An Improved Butterfly Optimization Algorithm for Engineering Design Problems Using the Cross-Entropy Method
    Li, Guocheng
    Shuang, Fei
    Zhao, Pan
    Le, Chengyi
    SYMMETRY-BASEL, 2019, 11 (08):
  • [33] A novel adaptive butterfly optimization algorithm
    Singh, Bhupinder
    Anand, Priyanka
    INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2018, 7 (04)
  • [34] A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems
    Zhu, Hao
    Hu, Yumei
    Zhu, Weidong
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (03)
  • [35] A chaotic adaptive butterfly optimization algorithm
    Peng, Maosong
    Wei, Xiuxi
    Huang, Huajuan
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 493 - 511
  • [36] A chaotic adaptive butterfly optimization algorithm
    Maosong Peng
    Xiuxi Wei
    Huajuan Huang
    Evolutionary Intelligence, 2024, 17 : 493 - 511
  • [37] A reformative teaching–learning-based optimization algorithm for solving numerical and engineering design optimization problems
    Zhuang Li
    Xiaotong Zhang
    Jingyan Qin
    Jie He
    Soft Computing, 2020, 24 : 15889 - 15906
  • [38] A reformative teaching-learning-based optimization algorithm for solving numerical and engineering design optimization problems
    Li, Zhuang
    Zhang, Xiaotong
    Qin, Jingyan
    He, Jie
    SOFT COMPUTING, 2020, 24 (20) : 15889 - 15906
  • [39] A multi-strategy enhanced northern goshawk optimization algorithm for global optimization and engineering design problems
    Li, Ke
    Huang, Haisong
    Fu, Shengwei
    Ma, Chi
    Fan, Qingsong
    Zhu, Yunwei
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 415
  • [40] A multi-strategy enhanced reptile search algorithm for global optimization and engineering optimization design problems
    Zhou, Liping
    Liu, Xu
    Tian, Ruiqing
    Wang, Wuqi
    Jin, Guowei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):