Deep Learning in the Identification of Psoriatic Skin Lesions

被引:0
|
作者
Lima, Gabriel Silva [1 ,3 ]
Pires, Carolina [2 ]
Beuren, Arlete Teresinha [1 ]
Lopes, Rui Pedro [3 ,4 ]
机构
[1] Univ Tecnol Fed Parana, Santa Helena, Brazil
[2] Univ Porto, Inst Biomed Sci Abel Salazar, Porto, Portugal
[3] Inst Politecn Braganca, Res Ctr Digitalizat & Intelligent Robot CeDRI, Braganca, Portugal
[4] Inst Politecn Braganca, Lab Sustentabilidade & Tecnol Reg Montanha, Braganca, Portugal
关键词
image processing; deep learning; psoriasis classification; mobile application; NEURAL-NETWORKS; CLASSIFICATION;
D O I
10.1007/978-3-031-49018-7_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Psoriasis is a dermatological lesion that manifests in several regions of the body. Its late diagnosis can generate the aggravation of the disease itself, as well as of the comorbidities associated with it. The proposed work presents a computational system for image classification in smartphones, through deep convolutional neural networks, to assist the process of diagnosis of psoriasis. The dataset and the classification algorithms used revealed that the classification of psoriasis lesions was most accurate with unsegmented and unprocessed images, indicating that deep learning networks are able to do a good feature selection. Smaller models have a lower accuracy, although they are more adequate for environments with power and memory restrictions, such as smartphones.
引用
收藏
页码:298 / 313
页数:16
相关论文
共 50 条
  • [31] EVALUATING PSORIATIC SKIN LESIONS IN PSORIASIS AND PSORIATIC ARTHRITIS: ULTRASOUND AS A COMPLEMENTARY MEASURE
    Kisten, Y.
    af Klint, E.
    Gyori, N.
    Rezaei, H.
    Eidsmo, L.
    Stahle, M.
    van Vollenhoven, R.
    ANNALS OF THE RHEUMATIC DISEASES, 2016, 75 : 356 - 357
  • [32] Application of deep learning algorithm in the recognition of cryptococcosis and talaromycosis skin lesions
    Wei, Wudi
    He, Xiaotao
    Bao, Xiuli
    Wang, Gang
    Luo, Qiang
    Chen, Lixiang
    Zhan, Baili
    Lai, Jingzhen
    Jiang, Junjun
    Ye, Li
    Liang, Hao
    MYCOSES, 2023, 66 (08) : 671 - 679
  • [33] A Deep Learning Framework for Recognition of Various Skin Lesions due to Diabetes
    Gupta, Tanu
    Saini, Satyam
    Saini, Aradhya
    Aggarwal, Shrutika
    Mittal, Ankush
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 92 - 98
  • [34] Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions
    El-Khatib, Hassan
    Popescu, Dan
    Ichim, Loretta
    SENSORS, 2020, 20 (06)
  • [35] INFLAMMATION AND PROLIFERATION IN A SKIN EQUIVALENT COMPARED TO NORMAL SKIN AND PSORIATIC LESIONS
    FRANSSON, J
    HAMMAR, H
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1990, 95 (04) : 469 - 469
  • [36] Proteomic analysis of psoriatic skin lesions in a Chinese population
    Wang, Wenjun
    Xu, Qiongqiong
    Li, Bao
    Li, Hui
    Shen, Songke
    Wu, Jing
    Ge, Huiyao
    Zhang, Hui
    Chen, Shirui
    Chen, Weiwei
    Gao, Jinping
    Tang, Huayang
    Liang, Bo
    Zheng, Xiaodong
    Sun, Liangdan
    JOURNAL OF PROTEOMICS, 2021, 240
  • [37] THE USE, OF LASER DOPPLER TO CLASSIFY PSORIATIC SKIN LESIONS
    Sudha, G. F.
    Kumar, M. Santosh
    Swetha, V.
    Gobinath, N.
    JOURNAL OF OPTICS-INDIA, 2008, 37 (02): : 63 - 71
  • [38] ABSENCE OF SOMATOSTATIN RECEPTORS IN PSORIATIC SKIN-LESIONS
    REUBI, JC
    HUNZIKER, T
    ARCHIVES OF DERMATOLOGICAL RESEARCH, 1990, 282 (02) : 139 - 141
  • [39] The use of Laser Doppler to Classify Psoriatic Skin Lesions
    G. F. Sudha
    M. Santosh Kumar
    V. Swetha
    N. Gobinath
    Journal of Optics, 2008, 37 (2) : 63 - 71
  • [40] Deep learning image analyses in dermatology, beyond skin lesions: a systematic review
    Choy, S.
    Paolino, A.
    Kim, B.
    Lim, S.
    Seo, J.
    Tan, S.
    Tan, W.
    Corbett, M.
    Barker, J.
    Lynch, M.
    Smith, C.
    Mahil, S. K.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (12) : S197 - S197