Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis

被引:5
|
作者
Chinilin, A. V. [1 ]
Vindeker, G. V. [1 ]
Savin, I. Yu. [1 ,2 ]
机构
[1] Dokuchaev Soil Sci Inst, Moscow 119017, Russia
[2] PeoplesFriendship Univ Russia, RUDN Univ, Ecol Fac, Moscow 115093, Russia
关键词
proximal soil sensing; prediction; algorithm; model calibration; validation; NEAR-INFRARED SPECTROSCOPY; TOTAL NITROGEN; LEAST-SQUARES; REFLECTANCE; PREDICTION; FRACTIONS; DIVERSITY; ABUNDANCE; PH;
D O I
10.1134/S1064229323601841
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986-2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination "Vis-NIR spectroscopy AND soil organic carbon". The meta-analysis using the nonparametric one-sided Kruskal-Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (R2cv/val), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared.
引用
收藏
页码:1605 / 1617
页数:13
相关论文
共 50 条
  • [31] Robust soil mapping at the farm scale with vis-NIR spectroscopy
    Ramirez-Lopez, L.
    Wadoux, A. M. J. -C.
    Franceschini, M. H. D.
    Terra, F. S.
    Marques, K. P. P.
    Sayao, V. M.
    Dematte, J. A. M.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2019, 70 (02) : 378 - 393
  • [32] Predicting soil microplastic concentration using vis-NIR spectroscopy
    Corradini, Fabio
    Bartholomeus, Harm
    Lwanga, Esperanza Huerta
    Gertsen, Hennie
    Geissen, Violette
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 650 : 922 - 932
  • [33] Prediction Models for Soil Properties Using VIS-NIR Spectroscopy
    Ando, Masaya
    Arakawa, Masamoto
    Funatsu, Kimito
    JOURNAL OF COMPUTER AIDED CHEMISTRY, 2009, 10 : 53 - 62
  • [34] In-field soil spectroscopy in Vis-NIR range for fast and reliable soil analysis: A review
    Piccini, Chiara
    Metzger, Konrad
    Debaene, Guillaume
    Stenberg, Bo
    Gotzinger, Sophia
    Boruvka, Lubos
    Sanden, Taru
    Bragazza, Luca
    Liebisch, Frank
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2024, 75 (02)
  • [35] Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy
    Morellos, Antonios
    Pantazi, Xanthoula-Eirini
    Moshou, Dimitrios
    Alexandridis, Thomas
    Whetton, Rebecca
    Tziotzios, Georgios
    Wiebensohn, Jens
    Bill, Ralf
    Mouazen, Abdul M.
    BIOSYSTEMS ENGINEERING, 2016, 152 : 104 - 116
  • [36] AN APPLICATION OF VIS-NIR REFLECTANCE SPECTROSCOPY AND ARTIFICIAL NEURAL NETWORKS TO THE PREDICTION OF SOIL ORGANIC CARBON CONTENT IN SOUTHERN ITALY
    Leone, Antonio P.
    Leone, Natalia
    Rampone, Salvatore
    FRESENIUS ENVIRONMENTAL BULLETIN, 2013, 22 (4B): : 1230 - 1238
  • [37] On-the-Go Vis-NIR Spectroscopy for Field-Scale Spatial-Temporal Monitoring of Soil Organic Carbon
    Reyes, Javier
    Liess, Mareike
    AGRICULTURE-BASEL, 2023, 13 (08):
  • [38] Estimation of soil organic carbon content by Vis-NIR spectroscopy combining feature selection algorithm and local regression method
    Liu, Baoyang
    Guo, Baofeng
    Zhuo, Renxiong
    Dai, Fan
    REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2023, 47
  • [39] Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices
    Recena, Ramiro
    Fernandez-Cabanas, Victor M.
    Delgado, Antonio
    GEODERMA, 2019, 337 : 368 - 374
  • [40] Multivariate methods with feature wavebands selection and stratified calibration for soil organic carbon content prediction by Vis-NIR spectroscopy
    Wu, Jun
    Guo, Daqian
    Li, Guo
    Guo, Xi
    Zhong, Liang
    Zhu, Qing
    Guo, Jiaxin
    Ye, Yingcong
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2022, 86 (05) : 1153 - 1166