A review of machine learning and deep learning applications in wave energy forecasting and WEC optimization

被引:19
|
作者
Shadmani, Alireza [1 ,2 ]
Nikoo, Mohammad Reza [3 ]
Gandomi, Amir H. [4 ,5 ]
Wang, Ruo-Qian [6 ]
Golparvar, Behzad [6 ]
机构
[1] Amirkabir Univ Technol, Dept Maritime Engn, Tehran, Iran
[2] Univ Ghent, Dept Electromech Syst & Met Engn, Fac Engn & Architecture, Technol Pk Zwijnaarde 46, Ghent, Belgium
[3] Sultan Qaboos Univ, Coll Engn, Dept Civil & Architectural Engn, Muscat, Oman
[4] Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, Australia
[5] Obuda Univ, Univ Res & Innovat Ctr EKIK, H-1034 Budapest, Hungary
[6] Rutgers State Univ, Dept Civil & Environm Engn, New Brunswick, NJ USA
关键词
Wave energy conversions; Wave characteristics; Optimization algorithms; Machine learning; Deep learning; ARTIFICIAL NEURAL-NETWORKS; TAKE-OFF SYSTEM; WIND; PREDICTION; GENERATION; CONVERTERS; MODELS; DECOMPOSITION; ALGORITHM; SURVIVAL;
D O I
10.1016/j.esr.2023.101180
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ocean energy technologies are in their developmental stages, like other renewable energy sources. To be useable in the energy market, most components of wave energy devices require further improvement. Additionally, wave resource characteristics must be evaluated and estimated correctly to assess the wave energy potential in various coastal areas. Multiple algorithms integrated with numerical models have recently been developed and utilized to estimate, predict, and forecast wave characteristics and wave energy resources. Each algorithm is vital in designing wave energy converters (WECs) to harvest more energy. Although several algorithms based on optimization approaches have been developed for efficiently designing WECs, they are unreliable and suffer from high computational costs. To this end, novel algorithms incorporating machine learning and deep learning have been presented to forecast wave energy resources and optimize WEC design. This review aims to classify and discuss the key characteristics of machine learning and deep learning algorithms that apply to wave energy forecast and optimal configuration of WECs. Consequently, in terms of convergence rate, combining optimization methods, machine learning, and deep learning algorithms can improve the WECs configuration and wave characteristic forecasting and optimization. In addition, the high capability of learning algorithms for forecasting wave resource and energy characteristics was emphasized. Moreover, a review of power take-off (PTO) co-efficients and the control of WECs demonstrated the indispensable ability of learning algorithms to optimize PTO parameters and the design of WECs.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Advances in Deep Learning Techniques for Short-term Energy Load Forecasting Applications: A Review
    Chandrasekaran, Radhika
    Paramasivan, Senthil Kumar
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2025, 32 (02) : 663 - 692
  • [32] Load optimization control of SJTU-WEC based on machine learning
    Wu, Zheng
    Lu, Yunfei
    Xu, Qi
    Chen, Weixing
    Zhang, Weidong
    Gao, Feng
    OCEAN ENGINEERING, 2022, 249
  • [33] Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects
    Benti, Natei Ermias
    Chaka, Mesfin Diro
    Semie, Addisu Gezahegn
    SUSTAINABILITY, 2023, 15 (09)
  • [34] Stacking Deep learning and Machine learning models for short-term energy consumption forecasting
    Reddy, A. Sujan
    Akashdeep, S.
    Harshvardhan, R.
    Kamath, S. Sowmya
    ADVANCED ENGINEERING INFORMATICS, 2022, 52
  • [35] Solar Energy Forecasting With Performance Optimization Using Machine Learning Techniques
    Murugesan, S.
    Mahasree, M.
    Kavin, F.
    Bharathiraja, N.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024,
  • [36] Modelling for forecasting energy consumption using SBO optimization and machine learning
    Vidhate, Kalpana D.
    Nema, Pragya
    Hasarmani, Totappa
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (02): : 605 - 612
  • [37] Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning
    Percuku, Arber
    Minkovska, Daniela
    Hinov, Nikolay
    TECHNOLOGIES, 2025, 13 (02)
  • [38] A review on machine learning applications in hydrogen energy systems
    Allal, Zaid
    Noura, Hassan N.
    Salman, Ola
    Vernier, Flavien
    Chahine, Khaled
    International Journal of Thermofluids, 2025, 26
  • [39] Machine Learning and Deep Learning Models for Demand Forecasting in Supply Chain Management: A Critical Review
    Douaioui, Kaoutar
    Oucheikh, Rachid
    Benmoussa, Othmane
    Mabrouki, Charif
    APPLIED SYSTEM INNOVATION, 2024, 7 (05)
  • [40] A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models
    Bhansali, Ashok
    Narasimhulu, Namala
    de Prado, Rocio Perez
    Divakarachari, Parameshachari Bidare
    Narayan, Dayanand Lal
    ENERGIES, 2023, 16 (17)