A Comprehensive Review on Machine Learning Techniques for Forecasting Wind Flow Pattern

被引:7
|
作者
Sri Preethaa, K. R. [1 ,2 ]
Muthuramalingam, Akila [1 ]
Natarajan, Yuvaraj [1 ,2 ]
Wadhwa, Gitanjali [1 ]
Ali, Ahmed Abdi Yusuf [3 ]
机构
[1] KPR Inst Engn & Technol, Dept Comp Sci & Engn, Coimbatore 641407, India
[2] Kyungpook Natl Univ, Dept Robot & Smart Syst Engn, 80 Daehak Ro, Daegu 41566, South Korea
[3] Univ Johannesburg, Dept Elect & Elect Engn, ZA-2092 Johannesburg, South Africa
关键词
wind pattern forecasting; machine learning; ensemble learning; deep learning hybrid model; ECHO STATE NETWORK; LONG-TERM WIND; SPEED; MODEL; DECOMPOSITION; PREDICTION; ENSEMBLE; LSTM;
D O I
10.3390/su151712914
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The wind is a crucial factor in various domains such as weather forecasting, the wind power industry, agriculture, structural health monitoring, and so on. The variability and unpredictable nature of the wind is a challenge faced by most wind-energy-based sectors. Several atmospheric and geographical factors influence wind characteristics. Many wind forecasting methods and tools have been introduced since early times. Wind forecasting can be carried out short-, medium-, and long-term. The uncertainty factors of the wind challenge the accuracy of techniques. This article brings the general background of physical, statistical, and intelligent approaches and their methods used to predict wind characteristics and their challenges-this work's objective is to improve effective data-driven models for forecasting wind-power production. The investigation and listing of the effectiveness of improved machine learning models to estimate univariate wind-energy time-based data is crucially the prominent focus of this work. The performance of various ML predicting models was examined using ensemble learning (ES) models, such as boosted trees and bagged trees, Support Vector Regression (SVR) with distinctive kernels etc. Numerous neural networks have recently been constructed for forecasting wind speed and power due to artificial intelligence (AI) advancement. Based on the model summary, further directions for research and application developments can be planned.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Review of machine learning techniques for optimal power flow
    Khaloie, Hooman
    Dolanyi, Mihaly
    Toubeau, Jean-Francois
    Vallee, Francois
    APPLIED ENERGY, 2025, 388
  • [22] Machine learning techniques for flood forecasting
    Hadi, Fayrouz Abd Alkareem
    Sidek, Lariyah Mohd
    Salih, Gasim Hayder Ahmed
    Basri, Hidayah
    Sammen, Saad Sh.
    Dom, Norlida Mohd
    Ali, Zaharifudin Muhamad
    Ahmed, Ali Najah
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (04) : 779 - 799
  • [23] Machine learning techniques and data for stock market forecasting: A literature review
    Kumbure, Mahinda Mailagaha
    Lohrmann, Christoph
    Luukka, Pasi
    Porras, Jari
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 197
  • [24] Review on Fashion Trend Analysis and Forecasting Techniques - A Machine Learning Approach
    Jiju, Amrita
    Anilkumar, Adithya
    Krishnan, Gokul K. P.
    George, Jithu
    Prasanth, R. S.
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [25] Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan
    Hussain, Dostdar
    Khan, Aftab Ahmed
    EARTH SCIENCE INFORMATICS, 2020, 13 (03) : 939 - 949
  • [26] Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan
    Dostdar Hussain
    Aftab Ahmed Khan
    Earth Science Informatics, 2020, 13 : 939 - 949
  • [27] Comprehensive review of depression detection techniques based on machine learning approach
    Pinto, Smitha Joyce
    Parente, Mimmo
    Soft Computing, 2024, 28 (17-18) : 10701 - 10725
  • [28] A Comprehensive Review and a Taxonomy of Edge Machine Learning: Requirements, Paradigms, and Techniques
    Li, Wenbin
    Hacid, Hakim
    Almazrouei, Ebtesam
    Debbah, Merouane
    AI, 2023, 4 (03) : 729 - 786
  • [29] Machine Learning Techniques for Biomedical Natural Language Processing: A Comprehensive Review
    Houssein, Essam H.
    Mohamed, Rehab E.
    Ali, Abdelmgeid A.
    IEEE ACCESS, 2021, 9 : 140628 - 140653
  • [30] A Comprehensive Review of Machine Learning Techniques for Condition-Based Maintenance
    Ward, Tyler
    Jenab, Kouroush
    Ortega-Moody, Jorge
    Staub, Selva
    INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT, 2024, 15 (02)