Detection of Monkeypox Cases Based on Symptoms Using XGBoost and Shapley Additive Explanations Methods

被引:16
|
作者
Farzipour, Alireza [1 ]
Elmi, Roya [2 ]
Nasiri, Hamid [3 ]
机构
[1] Semnan Univ, Dept Comp Sci, Semnan 3513119111, Iran
[2] Semnan Univ, Farzanegan Campus, Semnan 3519734851, Iran
[3] Amirkabir Univ Technol, Dept Comp Engn, Tehran Polytech, Tehran 1591634311, Iran
关键词
monkeypox; XGBoost; SHAP; MPXV; machine learning;
D O I
10.3390/diagnostics13142391
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The monkeypox virus poses a novel public health risk that might quickly escalate into a worldwide epidemic. Machine learning (ML) has recently shown much promise in diagnosing diseases like cancer, finding tumor cells, and finding COVID-19 patients. In this study, we have created a dataset based on the data both collected and published by Global Health and used by the World Health Organization (WHO). Being entirely textual, this dataset shows the relationship between the symptoms and the monkeypox disease. The data have been analyzed, using gradient boosting methods such as Extreme Gradient Boosting (XGBoost), CatBoost, and LightGBM along with other standard machine learning methods such as Support Vector Machine (SVM) and Random Forest. All these methods have been compared. The research aims to provide an ML model based on symptoms for the diagnosis of monkeypox. Previous studies have only examined disease diagnosis using images. The best performance has belonged to XGBoost, with an accuracy of 1.0 in reviews. To check the model's flexibility, k-fold cross-validation is used, reaching an average accuracy of 0.9 in 5 different splits of the test set. In addition, Shapley Additive Explanations (SHAP) helps in examining and explaining the output of the XGBoost model.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive exPlanations
    Halit Enes Aydin
    Muzaffer Can Iban
    Natural Hazards, 2023, 116 : 2957 - 2991
  • [32] Index tracking using shapley additive explanations and one-dimensional pointwise convolutional autoencoders
    Zhang, Yanyi
    De Smedt, Johannes
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2024, 95
  • [33] Landslide Modeling in a Tropical Mountain Basin Using Machine Learning Algorithms and Shapley Additive Explanations
    Vega, Johnny
    Sepulveda-Murillo, Fabio Humberto
    Parra, Melissa
    AIR SOIL AND WATER RESEARCH, 2023, 16
  • [34] Operating Key Factor Analysis of a Rotary Kiln Using a Predictive Model and Shapley Additive Explanations
    Mun, Seongil
    Yoo, Jehyeung
    ELECTRONICS, 2024, 13 (22)
  • [35] Assessment of the Impact of Meteorological Variables on Lake Water Temperature Using the SHapley Additive exPlanations Method
    Amnuaylojaroen, Teerachai
    Ptak, Mariusz
    Sojka, Mariusz
    WATER, 2024, 16 (22)
  • [36] USE OF SHAPLEY ADDITIVE EXPLANATIONS IN INTERPRETING AGENT-BASED SIMULATIONS OF MILITARY OPERATIONAL SCENARIOS
    Serre, Lynne
    Amyot-Bourgeois, Maude
    Astles, Brittany
    PROCEEDINGS OF THE 2021 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'21), 2020,
  • [37] An artificial neural network-pharmacokinetic model and its interpretation using Shapley additive explanations
    Ogami, Chika
    Tsuji, Yasuhiro
    Seki, Hiroto
    Kawano, Hideaki
    To, Hideto
    Matsumoto, Yoshiaki
    Hosono, Hiroyuki
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2021, 10 (07): : 760 - 768
  • [38] Prediction model for the compressive strength of rock based on stacking ensemble learning and shapley additive explanations
    Wu, Luyuan
    Li, Jianhui
    Zhang, Jianwei
    Wang, Zifa
    Tong, Jingbo
    Ding, Fei
    Li, Meng
    Feng, Yi
    Li, Hui
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 83 (11)
  • [39] Key factors affecting groundwater nitrate levels in the Yinchuan Region, Northwest China: Research using the eXtreme Gradient Boosting (XGBoost) model with the SHapley Additive exPlanations (SHAP) method
    Alam, S. M. Khorshed
    Li, Peiyue
    Rahman, Mahbubur
    Fida, Misbah
    Elumalai, Vetrimurugan
    ENVIRONMENTAL POLLUTION, 2025, 364
  • [40] Multiple Intrusion Detection Using Shapley Additive Explanations and a Heterogeneous Ensemble Model in an Unmanned Aerial Vehicle's Controller Area Network
    Hong, Young-Woo
    Yoo, Dong-Young
    APPLIED SCIENCES-BASEL, 2024, 14 (13):