Fuzzy-Rough Intrigued Harmonic Discrepancy Clustering

被引:1
|
作者
Yue, Guanli [1 ]
Qu, Yanpeng [2 ]
Yang, Longzhi [3 ]
Shang, Changjing [4 ]
Deng, Ansheng [1 ]
Chao, Fei [5 ]
Shen, Qiang [4 ]
机构
[1] Dalian Maritime Univ, Informat Technol Coll, Dalian 116026, Peoples R China
[2] Dalian Maritime Univ, Coll Artificial Intelligence, Dalian 116026, Peoples R China
[3] Northumbria Univ, Dept Comp & Informat Sci, London E1 7HT, England
[4] Aberystwyth Univ, Fac Business & Phys Sci, Dept Comp Sci, Aberystwyth SY23 3DB, Wales
[5] Xiamen Univ, Dept Comp Sci, Xiamen 361005, Peoples R China
关键词
Clustering algorithms; Rough sets; Harmonic analysis; Noise measurement; Fuzzy sets; Uncertainty; Phase change materials; Clustering; fuzzy-rough set; harmonic discrepancy; rough set; C-MEANS; K-MEANS;
D O I
10.1109/TFUZZ.2023.3247912
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy clustering decomposes data into clusters using partial memberships by exploring the cluster structure information, which demonstrates the comparable performance for knowledge exploitation under the circumstance of information incompleteness. In general, this scheme considers the memberships of objects to cluster centroids and applies to clusters with the spherical distribution. In addition, the noises and outliers may significantly influence the clustering process; a common mitigation measure is the application of separate noise processing algorithms, but this usually introduces multiple parameters, which are challenging to be determined for different data types. This article proposes a new fuzzy-rough intrigued harmonic discrepancy clustering (HDC) algorithm by noting that fuzzy-rough sets offer a higher degree of uncertainty modeling for both vagueness and imprecision present in real-valued datasets. The HDC is implemented by introducing a novel concept of harmonic discrepancy, which effectively indicates the dissimilarity between a data instance and foreign clusters with their distributions fully considered. The proposed HDC is thus featured by a powerful processing ability on complex data distribution leading to enhanced clustering performance, particularly on noisy datasets, without the use of explicit noise handling parameters. The experimental results confirm the effectiveness of the proposed HDC, which generally outperforms the popular representative clustering algorithms on both synthetic and benchmark datasets, demonstrating the superiority of the proposed algorithm.
引用
收藏
页码:3305 / 3318
页数:14
相关论文
共 50 条
  • [21] Fuzzy-rough feature selection accelerator
    Qian, Yuhua
    Wang, Qi
    Cheng, Honghong
    Liang, Jiye
    Dang, Chuangyin
    FUZZY SETS AND SYSTEMS, 2015, 258 : 61 - 78
  • [22] Fuzzy-Rough Nearest Neighbour Classification
    Jensen, Richard
    Cornelis, Chris
    TRANSACTIONS ON ROUGH SETS XIII, 2011, 6499 : 56 - +
  • [23] Dynamics of Fuzzy-Rough Cognitive Networks
    Harmati, Istvan A.
    SYMMETRY-BASEL, 2021, 13 (05):
  • [24] Fuzzy-rough nearest neighbors algorithm
    Sarkar, M
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 3556 - 3561
  • [25] Detecting fuzzy-rough conditional anomalies
    Hu, Qian
    Yuan, Zhong
    Mi, Jusheng
    Zhang, Jun
    INFORMATION SCIENCES, 2025, 690
  • [26] Fuzzy decision tree based on fuzzy-rough technique
    Zhai, Jun-hai
    SOFT COMPUTING, 2011, 15 (06) : 1087 - 1096
  • [27] Fuzzy decision tree based on fuzzy-rough technique
    Jun-hai Zhai
    Soft Computing, 2011, 15 : 1087 - 1096
  • [28] A Variable Precision Fuzzy Rough Set Approach to a Fuzzy-Rough Decision Table
    Jian, Li-rong
    Li, Ming-yang
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2016), 2016, : 236 - 240
  • [29] Measures for Unsupervised Fuzzy-Rough Feature Selection
    Mac Parthalain, Neil
    Jensen, Richard
    2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 560 - 565
  • [30] On fuzzy-rough sets approach to feature selection
    Bhatt, RB
    Gopal, M
    PATTERN RECOGNITION LETTERS, 2005, 26 (07) : 965 - 975