Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type

被引:6
|
作者
Martini, Alessio [1 ]
Mueller, Detlef [2 ]
Golo, Sebastiano Nicolussi [3 ,4 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, England
[2] Christian Albrechts Univ Kiel, Math Seminar, Heinrich Hecht Pl 6, D-24118 Kiel, Germany
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, England
[4] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, Jyvaskyla 40014, Finland
基金
英国工程与自然科学研究理事会;
关键词
Spectral multiplier; sub-Laplacian; wave equation; sub-Riemannian manifold; eikonal equation; Fourier integral operator; KOHN LAPLACIAN; OPERATORS; THEOREM; HEISENBERG; SUBLAPLACIAN; SPHERE;
D O I
10.4171/JEMS/1191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a smooth second-order real differential operator in divergence form on a manifold of dimension n. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of Mikhlin-Hormander type and wave propagator estimates of Miyachi-Peral type for cannot be wider than the corresponding ranges for the Laplace operator on Rn. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation for the wave propagator associated with and nondegeneracy properties of the sub-Riemannian geodesic flow.
引用
收藏
页码:785 / 843
页数:59
相关论文
共 50 条