共 50 条
Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type
被引:6
|作者:
Martini, Alessio
[1
]
Mueller, Detlef
[2
]
Golo, Sebastiano Nicolussi
[3
,4
]
机构:
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, England
[2] Christian Albrechts Univ Kiel, Math Seminar, Heinrich Hecht Pl 6, D-24118 Kiel, Germany
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, England
[4] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, Jyvaskyla 40014, Finland
基金:
英国工程与自然科学研究理事会;
关键词:
Spectral multiplier;
sub-Laplacian;
wave equation;
sub-Riemannian manifold;
eikonal equation;
Fourier integral operator;
KOHN LAPLACIAN;
OPERATORS;
THEOREM;
HEISENBERG;
SUBLAPLACIAN;
SPHERE;
D O I:
10.4171/JEMS/1191
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let be a smooth second-order real differential operator in divergence form on a manifold of dimension n. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of Mikhlin-Hormander type and wave propagator estimates of Miyachi-Peral type for cannot be wider than the corresponding ranges for the Laplace operator on Rn. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation for the wave propagator associated with and nondegeneracy properties of the sub-Riemannian geodesic flow.
引用
收藏
页码:785 / 843
页数:59
相关论文