Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type

被引:6
|
作者
Martini, Alessio [1 ]
Mueller, Detlef [2 ]
Golo, Sebastiano Nicolussi [3 ,4 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, England
[2] Christian Albrechts Univ Kiel, Math Seminar, Heinrich Hecht Pl 6, D-24118 Kiel, Germany
[3] Univ Birmingham, Sch Math, Birmingham B15 2TT, England
[4] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, Jyvaskyla 40014, Finland
基金
英国工程与自然科学研究理事会;
关键词
Spectral multiplier; sub-Laplacian; wave equation; sub-Riemannian manifold; eikonal equation; Fourier integral operator; KOHN LAPLACIAN; OPERATORS; THEOREM; HEISENBERG; SUBLAPLACIAN; SPHERE;
D O I
10.4171/JEMS/1191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a smooth second-order real differential operator in divergence form on a manifold of dimension n. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of Mikhlin-Hormander type and wave propagator estimates of Miyachi-Peral type for cannot be wider than the corresponding ranges for the Laplace operator on Rn. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation for the wave propagator associated with and nondegeneracy properties of the sub-Riemannian geodesic flow.
引用
收藏
页码:785 / 843
页数:59
相关论文
共 50 条
  • [1] Spectral multipliers for sub-Laplacians with drift on Lie groups
    Waldemar Hebisch
    Giancarlo Mauceri
    Stefano Meda
    Mathematische Zeitschrift, 2005, 251 : 899 - 927
  • [2] Spectral multipliers for sub-Laplacians with drift on Lie groups
    Hebisch, W
    Mauceri, G
    Meda, S
    MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (04) : 899 - 927
  • [3] Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups
    Martini, Alessio
    Ottazzi, Alessandro
    Vallarino, Maria
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 136 (01): : 357 - 397
  • [4] Spectral multipliers for sub-Laplacians on solvable extensions of stratified groups
    Alessio Martini
    Alessandro Ottazzi
    Maria Vallarino
    Journal d'Analyse Mathématique, 2018, 136 : 357 - 397
  • [5] Spectral multipliers for sub-Laplacians on amenable Lie groups with exponential volume growth
    Michael Gnewuch
    Mathematische Zeitschrift, 2004, 246 : 69 - 83
  • [6] Spectral multipliers for sub-Laplacians on amenable Lie groups with exponential volume growth
    Gnewuch, M
    MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (1-2) : 69 - 83
  • [7] Convolution kernels versus spectral multipliers for sub-Laplacians on groups of polynomial growth
    Martini, Alessio
    Ricci, Fulvio
    Tolomeo, Leonardo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (06) : 1603 - 1638
  • [8] A Kuran Type Regularity Criterion for Sub-Laplacians A Necessary and Sufficient Condition
    Tommasoli, Andrea
    POTENTIAL ANALYSIS, 2010, 32 (01) : 57 - 66
  • [9] Liouville-type theorems for real sub-Laplacians
    Bonfiglioli, A
    Lanconelli, E
    MANUSCRIPTA MATHEMATICA, 2001, 105 (01) : 111 - 124
  • [10] Quantum limits of sub-Laplacians via joint spectral calculus
    Letrouit, Cyril
    DOCUMENTA MATHEMATICA, 2023, 28 : 55 - 104