Constraining axion and compact dark matter with interstellar medium heating

被引:8
|
作者
Wadekar, Digvijay [1 ]
Wang, Zihui [2 ]
机构
[1] Inst Adv Study, Sch Nat Sci, 1 Einstein Dr, Princeton, NJ 08540 USA
[2] NYU, Ctr Cosmol & Particle Phys, Dept Phys, New York, NY 10003 USA
关键词
PRIMORDIAL BLACK-HOLES; MILKY-WAY SATELLITES; LEO T; DYNAMICAL FRICTION; HI; TELESCOPE; MONOPOLES; MINIHALOS; LIBRARY; CLUSTER;
D O I
10.1103/PhysRevD.107.083011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cold interstellar gas systems have been used to constrain dark matter (DM) models by the condition that the heating rate from DM must be lower than the astrophysical cooling rate of the gas. Following the methodology of Wadekar and Farrar [1], we use the interstellar medium of a gas-rich dwarf galaxy, Leo T, and a Milky Way-environment gas cloud, G33.4-8.0 to constrain DM. Leo T is a particularly strong system as its gas can have the lowest cooling rate among all the objects in the late Universe (owing to the low volume density and metallicity of the gas). Milky Way clouds, in some cases, provide complementary limits as the DM-gas relative velocity in them is much larger than that in Leo T. We derive constraints on the following scenarios in which DM can heat the gas: (i) interaction of axions with hydrogen atoms or free electrons in the gas, (ii) deceleration of relic magnetically charged DM in gas plasma, (iii) dynamical friction from compact DM, (iv) hard sphere scattering of composite DM with gas. Our limits are complementary to DM direct detection searches. Detection of more gas-rich low-mass dwarfs like Leo T from upcoming 21 cm and optical surveys can improve our bounds.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Axion dark matter: How to see it?
    Semertzidis, Yannis K.
    Youn, SungWoo
    SCIENCE ADVANCES, 2022, 8 (08)
  • [42] The flavor of QCD axion dark matter
    Gonzalo Alonso-Álvarez
    James M. Cline
    Tianzhuo Xiao
    Journal of High Energy Physics, 2023
  • [43] The cosmological axion dark matter decay
    Chan, Man Ho
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):
  • [44] Gravitational Waves in Axion Dark Matter
    Chu, Chong-Sun
    Soda, Jiro
    Yoshida, Daiske
    UNIVERSE, 2020, 6 (07)
  • [45] Axion dark matter with thermal friction
    Kiwoon Choi
    Sang Hui Im
    Hee Jung Kim
    Hyeonseok Seong
    Journal of High Energy Physics, 2023
  • [46] Heating and cooling of the interstellar medium
    Tielens, AGGM
    DIFFUSE INFRARED RADIATION AND THE IRTS, 1997, 124 : 255 - 263
  • [47] Extended Search for the Invisible Axion with the Axion Dark Matter Experiment
    Braine, T.
    Cervantes, R.
    Crisosto, N.
    Du, N.
    Kimes, S.
    Rosenberg, L. J.
    Rybka, G.
    Yang, J.
    Bowring, D.
    Chou, A. S.
    Khatiwada, R.
    Sonnenschein, A.
    Wester, W.
    Carosi, G.
    Woollett, N.
    Duffy, L. D.
    Bradley, R.
    Boutan, C.
    Jones, M.
    LaRoque, B. H.
    Oblath, N. S.
    Taubman, M. S.
    Clarke, J.
    Dove, A.
    Eddins, A.
    O'Kelley, S. R.
    Nawaz, S.
    Siddiqi, I
    Stevenson, N.
    Agrawal, A.
    Dixit, A., V
    Gleason, J. R.
    Jois, S.
    Sikivie, P.
    Solomon, J. A.
    Sullivan, N. S.
    Tanner, D. B.
    Lentz, E.
    Daw, E. J.
    Buckley, J. H.
    Harrington, P. M.
    Henriksen, E. A.
    Murch, K. W.
    PHYSICAL REVIEW LETTERS, 2020, 124 (10)
  • [48] Constraining dark matter properties with SPI
    Boyarsky, Alexey
    Malyshev, Denys
    Neronov, Andrey
    Ruchayskiy, Oleg
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 387 (04) : 1345 - 1360
  • [49] Constraining dark matter in the MSSM at the LHC
    Nojiri, MM
    Polesello, G
    Tovey, DR
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (03):
  • [50] Constraining dark matter in galactic substructure
    Baxter, Eric J.
    Dodelson, Scott
    Koushiappas, Savvas M.
    Strigari, Louis E.
    PHYSICAL REVIEW D, 2010, 82 (12):