Characterizing quantile-varying covariate effects under the accelerated failure time model
被引:1
|
作者:
Reeder, Harrison T.
论文数: 0引用数: 0
h-index: 0
机构:
Massachusetts Gen Hosp, Biostat, 50 Staniford St,Suite 560, Boston, MA 02114 USA
Harvard Med Sch, Dept Med, 25 Shattuck St, Boston, MA 02115 USAMassachusetts Gen Hosp, Biostat, 50 Staniford St,Suite 560, Boston, MA 02114 USA
Reeder, Harrison T.
[1
,2
]
Lee, Kyu Ha
论文数: 0引用数: 0
h-index: 0
机构:
Harvard TH Chan Sch Publ Hlth, Dept Nutr Epidemiol & Biostat, 677 Huntington Ave, Boston, MA 02115 USAMassachusetts Gen Hosp, Biostat, 50 Staniford St,Suite 560, Boston, MA 02114 USA
Lee, Kyu Ha
[3
]
Haneuse, Sebastien
论文数: 0引用数: 0
h-index: 0
机构:
Harvard TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USAMassachusetts Gen Hosp, Biostat, 50 Staniford St,Suite 560, Boston, MA 02114 USA
Haneuse, Sebastien
[4
]
机构:
[1] Massachusetts Gen Hosp, Biostat, 50 Staniford St,Suite 560, Boston, MA 02114 USA
[2] Harvard Med Sch, Dept Med, 25 Shattuck St, Boston, MA 02115 USA
[3] Harvard TH Chan Sch Publ Hlth, Dept Nutr Epidemiol & Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[4] Harvard TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
Accelerated failure time model;
Bayesian survival analysis;
Left truncation;
Time-varying coefficients;
Time-varying covariates;
REGRESSION;
HAZARDS;
D O I:
10.1093/biostatistics/kxac052
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
An important task in survival analysis is choosing a structure for the relationship between covariates of interest and the time-to-event outcome. For example, the accelerated failure time (AFT) model structures each covariate effect as a constant multiplicative shift in the outcome distribution across all survival quantiles. Though parsimonious, this structure cannot detect or capture effects that differ across quantiles of the distribution, a limitation that is analogous to only permitting proportional hazards in the Cox model. To address this, we propose a general framework for quantile-varying multiplicative effects under the AFT model. Specifically, we embed flexible regression structures within the AFT model and derive a novel formula for interpretable effects on the quantile scale. A regression standardization scheme based on the g-formula is proposed to enable the estimation of both covariate-conditional and marginal effects for an exposure of interest. We implement a user-friendly Bayesian approach for the estimation and quantification of uncertainty while accounting for left truncation and complex censoring. We emphasize the intuitive interpretation of this model through numerical and graphical tools and illustrate its performance through simulation and application to a study of Alzheimer's disease and dementia.
机构:
Canc Res UK, Dept Epidemiol Math & Stat, Wolfson Inst Prevent Med, London EC1M 6BQ, EnglandCanc Res UK, Dept Epidemiol Math & Stat, Wolfson Inst Prevent Med, London EC1M 6BQ, England
Winnett, A
Sasieni, P
论文数: 0引用数: 0
h-index: 0
机构:
Canc Res UK, Dept Epidemiol Math & Stat, Wolfson Inst Prevent Med, London EC1M 6BQ, EnglandCanc Res UK, Dept Epidemiol Math & Stat, Wolfson Inst Prevent Med, London EC1M 6BQ, England
机构:
E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R ChinaE China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
Chen, Pengcheng
Zhang, Jiajia
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USAE China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
Zhang, Jiajia
Zhang, Riquan
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R ChinaE China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China