Design and mechanical performance of nature-inspired novel hybrid triply periodic minimal surface lattice structures fabricated using material extrusion

被引:6
|
作者
Nazir, Aamer [1 ,2 ]
Hussain, Sajjad [3 ]
Ali, Hafiz Muhammad [1 ,4 ]
Waqar, Saad [5 ]
机构
[1] King Fahad Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia
[2] King Fahad Univ Petr & Minerals, Interdisciplinary Res Ctr Adv Mat, Dhahran 31261, Saudi Arabia
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hung Hom, Kowloon, Hong Kong 999077, Peoples R China
[4] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Sustainable Energy Syst, Dhahran 31261, Saudi Arabia
[5] Hong Kong Polytech Univ, Dept Ind & Syst Engn, State Key Lab Ultraprecis Machining Technol, Hung Hom,Kowloon, Hong Kong, Peoples R China
来源
关键词
Additive manufacturing; Triply periodic minimal surface; DfAM; Hybrid lattice structures; Functionally graded cellular structures; Nature-inspired; ENERGY-ABSORPTION; HEAT-TRANSFER; CRASHWORTHINESS;
D O I
10.1016/j.mtcomm.2024.108349
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The materials found in nature often exhibit intriguing characteristics due to multiple mor- phologies that are architecture and integrated at different length scales. On the other hand, most of the engineered cellular lattice structures possess a less-sophisticated, uniform, and one type of morphology that may not be ideal and optimized. Therefore, the engineered materials possess multiple morphologies/hybrid lattices can exhibit higher performance and advantages to achieve desired properties. In this work, hybrid lattice structures are designed by incorporating surface-based triply periodic minimal surface (TPMS) structures that are constructed using implicit equations. Six samples were designed that include four hybrid (Diamond, Gyroid, Lidinoid, Split P are joined and hybridized linearly in a single sample) and two uniform morphology samples composed of Gyroid, and Diamond TPMS structures. The challenges related to interfaces while joining different morphologies in hybrid samples were addressed properly. For quasi-static compression tests, three specimens for each sample were additively manufactured using PLA material. Mechanical performance in terms of strength, stiffness, energy absorption and failure are studied using experimental and finite element analysis methods. The results show that hybrid HS2 and Diamond structures performance is almost similar at higher strain rates; however, the deformation behavior significantly varied. The deformation mechanics of hybrid structure is greatly different from uniform morphology counterparts. Structures with better connectivity almost deform together and it highly affects the post-yield response of the structure. Uniform morphology structures absorbed energy nearly at a constant stress level; whereas, all hybrid structures possess progressive mode of energy absorption. The hybrid structure HS2 possesses highest specific energy absorption among all structures. Thus, hybrid structures are crucial when used for energy absorption application with a progressive deformation mechanics such as footwear, blast, impact, crashworthiness, and ballistic protection applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Design, fabrication, and evaluation of functionally graded triply periodic minimal surface structures fabricated by 3D printing
    Hassan, Ibrahim M. M.
    Enab, Tawakol A. A.
    Fouda, Noha
    Eldesouky, Ibrahim
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (01)
  • [32] Nature-inspired triply periodic minimal surface-based structures in sheet and solid configurations for performance enhancement of a low-thermal-conductivity phase-change material for latent-heat thermal-energy-storage applications
    Qureshi, Zahid Ahmed
    Al-Omari, Salah Addin Burhan
    Elnajjar, Emad
    Al-Ketan, Oraib
    Abu Al-Rub, Rashid
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 173
  • [33] Characterization of triply periodic minimal surface structures obtained using toolpath-based construction design
    Tan, Shujie
    Zhang, Xi
    Wang, Ziyu
    Ding, Liping
    Chen, Wenliang
    Zhang, Yicha
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2022, 1 (03):
  • [34] Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting
    Sokollu, Baris
    Gulcan, Orhan
    Konukseven, Erhan Ilhan
    ADDITIVE MANUFACTURING, 2022, 60
  • [35] Experimental study on flow and heat transfer performance of triply periodic minimal surface structures and their hybrid form as disturbance structure
    Yan, Guanghan
    Sun, Mingrui
    Zhang, Zhaoda
    Liang, Yiqiang
    Jiang, Nan
    Pang, Xiaodong
    Song, Yongchen
    Liu, Yu
    Zhao, Jiafei
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 147
  • [36] Mechanical evaluation of elastomeric thermoplastic polyurethane additively manufactured triply periodic minimal surface area lattice structures for adjustable cushioning properties
    Claybrook, Fay Rhianna
    Southee, Darren John
    Mohammed, Mazher
    RAPID PROTOTYPING JOURNAL, 2024, 30 (06) : 1070 - 1086
  • [37] Mechanical properties of diamond-type triply periodic minimal surface structures fabricated by photo-curing 3D printing
    Zeng, Chengjun
    Hu, Junqi
    Liu, Liwu
    Zhao, Wei
    Xin, Xiaozhou
    Song, Xuehao
    Liu, Yanju
    Leng, Jinsong
    COMPOSITE STRUCTURES, 2025, 352
  • [38] Hybrid design of triply periodic minimal surface (TPMS) structures for loop heat pipe wicks to enhance heat and mass transfer
    Zhao, Yihang
    Wei, Mingshan
    Dan, Dan
    Zheng, Siyu
    Tian, Ran
    Meng, Shu
    Nan, Xin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 242
  • [39] Hybrid Biomechanical Design of Dental Implants: Integrating Solid and Gyroid Triply Periodic Minimal Surface Lattice Architectures for Optimized Stress Distribution
    Alemayehu, Dawit Bogale
    Todoh, Masahiro
    Huang, Song-Jeng
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2025, 16 (02)
  • [40] Study on novel battery thermal management using triply periodic minimal surface porous structures liquid cooling channel
    Du, Xinming
    Wang, Zhaohui
    Gao, Quanjie
    Yang, Haonan
    Bao, Rongqing
    Xiong, Shixiang
    APPLIED THERMAL ENGINEERING, 2024, 257