Magnetic Heating Amorphous NiFe Hydroxide Nanosheets Encapsulated Ni Nanoparticles@Wood Carbon to Boost Oxygen Evolution Reaction Activity

被引:10
|
作者
Wang, Yaoxing [1 ]
Fan, Xueqin [1 ]
Du, Qiuyu [1 ]
Shang, Ying [1 ]
Li, Xueqi [1 ]
Cao, Zhifeng [1 ]
Wang, Xuan [1 ]
Li, Jian [2 ]
Xie, Yanjun [2 ]
Gan, Wentao [1 ]
机构
[1] Northeast Forestry Univ, Key Lab Biobased Mat Sci & Technol, Minist Educ, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, Engn Res Ctr Adv Wooden Mat, Minist Educ, Harbin 150040, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
amorphous nanosheets; local heating; magnetic heating; oxygen evolution reaction; wood carbon; WATER OXIDATION; ELECTROCATALYSTS; TEMPERATURE; TRANSITION;
D O I
10.1002/smll.202206798
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The oxygen evolution reaction (OER) has significant effects on the water-splitting process and rechargeable metal-air batteries; however, the sluggish reaction kinetics caused by the four-electron transfer process for transition metal catalysts hinder large-scale commercialization in highly efficient electrochemical energy conversion devices. Herein, a magnetic heating-assisted enhancement design for low-cost carbonized wood with high OER activity is proposed, in which Ni nanoparticles are encapsulated in amorphous NiFe hydroxide nanosheets (a-NiFe@Ni-CW) via direct calcination and electroplating. The introduction of amorphous NiFe hydroxide nanosheets optimizes the electronic structure of a-NiFe@Ni-CW, accelerating electron transfer and reducing the energy barrier in the OER. More importantly, the Ni nanoparticles located on carbonized wood can function as magnetic heating centers under the effect of an alternating current (AC) magnetic field, further promoting the adsorption of reaction intermediates. Consequently, a-NiFe@Ni-CW demonstrated an overpotential of 268 mV at 100 mA cm(-2) for the OER under an AC magnetic field, which is superior to that of most reported transition metal catalysts. Starting with sustainable and abundant wood, this work provides a reference for highly effective and low-cost electrocatalyst design with the assistance of a magnetic field.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Enhanced Oxygen Evolution Reaction Activity by Encapsulating NiFe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanofibers
    Wei, Peng
    Sun, Xueping
    Liang, Qirui
    Li, Xiaogang
    He, Zhimin
    Hu, Xiangsheng
    Zhang, Jinxu
    Wang, Minhui
    Li, Qing
    Yang, Hui
    Han, Jiantao
    Huang, Yunhui
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (28) : 31503 - 31513
  • [22] Synthesis of Amorphous Ni-Zn Double Hydroxide Nanocages with Excellent Electrocatalytic Activity toward Oxygen Evolution Reaction
    Wang, Shuqian
    Nai, Jianwei
    Yang, Shihe
    Guo, Lin
    CHEMNANOMAT, 2015, 1 (05) : 324 - 330
  • [23] Role of Zr in promoted activity of urea oxidation reaction and oxygen evolution reaction for NiFe layered double hydroxide
    He, Jingting
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 57 : 929 - 938
  • [24] Nanoarchitectonics with NiFe-layered double hydroxide decorated Co/Ni-carbon nanotubes for efficient oxygen evolution reaction electrocatalysis
    Ji, Kang
    Xia, Xiang
    Yue, Yunlong
    Yang, Ping
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 920
  • [25] Amorphous-Amorphous Coupling Enhancing the Oxygen Evolution Reaction Activity and Stability of the NiFe-Based Catalyst
    Gao, Hanqing
    Sun, Wei
    Tian, Xinlong
    Liao, Jianjun
    Ma, Chenglong
    Hu, Yuling
    Du, Gan
    Yang, Ji
    Ge, Chengjun
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (13) : 15205 - 15213
  • [26] Hierarchical ultrathin NiFe-borate layered double hydroxide nanosheets encapsulated into biomass-derived nitrogen-doped carbon for efficient electrocatalytic oxygen evolution
    Miao, Jing
    Zhao, Xiaojun
    Hu, Hang-Yang
    Liu, Zhi-Hong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 635
  • [27] Amorphous nickel-iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction
    He, Wenjun
    Ren, Gang
    Li, Ying
    Jia, Dongbo
    Li, Shiyun
    Cheng, Jianing
    Liu, Caichi
    Hao, Qiuyan
    Zhang, Jun
    Liu, Hui
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (06) : 1708 - 1713
  • [28] Effects of Fe on electrocatalytic oxygen evolution reaction activity for CoFe layered double hydroxide nanosheets
    Wang, Yuan
    Han, Yu
    Yan, Ke
    Huang, Yunxia
    Zhang, Maolin
    Lai, Xiaoyong
    Li, Zhimin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 903
  • [29] Effects of phosphate precursors on morphology and oxygen evolution reaction activity of NiFe (oxy)hydroxide on nickel foams
    Duan, Ran
    Li, Ye-jun
    Wang, Shu
    Tong, Yong-gang
    Rubahn, Horst-Gunter
    Zhang, Gu-fei
    Qi, Wei-hong
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (12) : 4050 - 4061
  • [30] Amorphous NiFe(oxy)hydroxide nanosheet integrated partially exfoliated graphite foil for high efficiency oxygen evolution reaction
    Ye, Yin-Jian
    Zhang, Ning
    Liu, Xiao-Xia
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (46) : 24208 - 24216