Score-based transport modeling for mean-field Fokker-Planck equations

被引:0
|
作者
Lu, Jianfeng [1 ]
Wu, Yue [2 ]
Xiang, Yang [2 ,3 ]
机构
[1] Duke Univ, Dept Math Phys & Chem, Durham, NC USA
[2] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[3] HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen, Peoples R China
关键词
Scored-based modeling; Fokker-Planck equation; Mean field interaction;
D O I
10.1016/j.jcp.2024.112859
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We use the score-based transport modeling method to solve the mean-field Fokker-Planck equations, which we call MSBTM. We establish an upper bound on the time derivative of the Kullback-Leibler (KL) divergence to MSBTM numerical estimation from the exact solution, thus validates the MSBTM approach. Besides, we provide an error analysis for the algorithm. In numerical experiments, we study three types of mean-field Fokker-Planck equation and their corresponding dynamics of particles in interacting systems. The MSBTM algorithm is numerically validated through qualitative and quantitative comparison between the MSBTM solutions, the results of integrating the associated stochastic differential equation and the analytical solutions if available.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [42] Deformed multivariable fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [43] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [44] Fokker-Planck approach to nonlocal high-field transport
    Bringuier, E
    PHYSICAL REVIEW B, 1997, 56 (09): : 5328 - 5331
  • [45] Convergence to Equilibrium in Fokker-Planck Equations
    Ji, Min
    Shen, Zhongwei
    Yi, Yingfei
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1591 - 1615
  • [46] DIFFERENTIAL EQUATIONS OF FOKKER-PLANCK TYPE
    KRATZEL, E
    MATHEMATISCHE NACHRICHTEN, 1967, 35 (3-4) : 137 - &
  • [47] RADIAL FOKKER-PLANCK TRANSPORT CODE
    FOWLER, RH
    HOGAN, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1300 - 1300
  • [48] FOKKER-PLANCK EQUATIONS FOR CHARGED-PARTICLE TRANSPORT IN RANDOM FIELDS
    JOKIPII, JR
    ASTROPHYSICAL JOURNAL, 1972, 172 (02): : 319 - &
  • [49] Stochastic modeling of fMRI time-series with Fokker-Planck equations
    Jiang, TZ
    Kruggel, FJ
    NEUROIMAGE, 2001, 13 (06) : S167 - S167
  • [50] Modeling populations of electric hot water tanks with Fokker-Planck equations
    Beeker, Nathanael
    Malisani, Paul
    Petit, Nicolas
    IFAC PAPERSONLINE, 2016, 49 (08): : 66 - 73