Tracking Object's Pose via Dynamic Tactile Interaction

被引:0
|
作者
Lin, Qiguang [1 ]
Yan, Chaojie [2 ]
Li, Qiang [3 ]
Ling, Yonggen [4 ]
Lee, Wangwei [4 ]
Zheng, Yu [4 ]
Wan, Zhaoliang [5 ]
Huang, Bidan [4 ]
Liu, Xiaofeng [1 ]
机构
[1] Hohai Univ, Coll IoT Engn, Jiangsu Key Lab Special Robot Technol, Changzhou 213022, Jiangsu, Peoples R China
[2] Zhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control & Technol, R China, Hangzhou, Peoples R China
[3] Shenzhen Technol Univ, Coll Big Data & Internet, Shenzhen 518118, Peoples R China
[4] Tencent Robot X, Shenzhen, Peoples R China
[5] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Tactile perception; robotic grasping; extended Kalman filter;
D O I
10.1142/S0219843623500214
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
It is a challenging task to localize and track an in-hand object in robotic domain. Researchers were mainly using the vision as major modality for extracting object's pose. The vision approaches are fragile when the object is occluded by the robotic arm and hand. To this end, we propose a tactile-based DTI-Tracker (tracking object's pose via Dynamic Tactile Interaction) approach and formalize the object's tracking as a filter problem. An Extended Kalman Filter (EKF) is used to estimate the in-hand object pose exploiting the high spatial resolution tactile feedback. Given the initial estimation error, the proposed approach rapidly converges the estimation result to the real pose and the statistic evaluation shows the robustness of the proposed approach. We evaluate this method in physics simulation and real multi-fingered grasping setup while the object is static and movable. The proposed method is a potential tool to foster future research on dexterous manipulation using multifingered robotic hand.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] A Benchmark Dataset for 6DoF Object Pose Tracking
    Wu, Po-Chen
    Lee, Yueh-Ying
    Tseng, Hung-Yu
    Ho, Hsuan-I
    Yang, Ming-Hsuan
    Chien, Shao-Yi
    ADJUNCT PROCEEDINGS OF THE 2017 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT), 2017, : 186 - 191
  • [42] Robust object tracking via online dynamic spatial bias appearance models
    Chen, Datong
    Yang, Jie
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (12) : 2157 - 2169
  • [43] ROBUST OBJECT TRACKING VIA MULTI-TASK DYNAMIC SPARSE MODEL
    Ji, Zhangjian
    Wang, Weiqiang
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 393 - 397
  • [44] Human Pose Estimation and Object Interaction for Sports Behaviour
    Arif, Ayesha
    Ghadi, Yazeed Yasin
    Alarfaj, Mohammed
    Jalal, Ahmad
    Kamal, Shaharyar
    Kim, Dong-Seong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 1 - 18
  • [45] Online Robust Object Tracking via A Sample-based Dynamic Dictionary
    Liu, Yang
    Li, Yibo
    2013 6TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), VOLS 1-3, 2013, : 56 - 61
  • [46] Tactile Hand Motion and Pose Guidance for 3D Interaction
    Marquardt, Alexander
    Maiero, Jens
    Kruijff, Ernst
    Trepkowski, Christina
    Schwandt, Andrea
    Hinkenjann, Andre
    Schoening, Johannes
    Stuerzlinger, Wolfgang
    24TH ACM SYMPOSIUM ON VIRTUAL REALITY SOFTWARE AND TECHNOLOGY (VRST 2018), 2018,
  • [47] An approach for tracking the 3D object pose using two object points
    Vuppala, Sai Krishna
    Graeser, Axel
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 261 - 270
  • [48] Tactile-Guided Dynamic Object Planar Manipulation
    Liang, Boyuan
    Liang, Wenyu
    Wu, Yan
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 3203 - 3209
  • [49] Linear dynamic system method for tactile object classification
    MA Rui
    LIU HuaPing
    SUN FuChun
    YANG QingFen
    GAO Meng
    Science China(Information Sciences), 2014, 57 (12) : 47 - 57
  • [50] Linear dynamic system method for tactile object classification
    Ma Rui
    Liu HuaPing
    Sun FuChun
    Yang QingFen
    Gao Meng
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (12) : 1 - 11